<span>an oxide of iron, magnesium, aluminum, and chromium</span>
Answer:- C. 16.4 L
Solution:- The given balanced equation is:

From this equation, there is 2:1 mol ratio between HCl and hydrogen gas. First of all we calculate the moles of hydrogen gas from given grams of HCl using stoichiometry and then the volume of hydrogen gas could be calculated using ideal gas law equation, PV = nRT.
Molar mass of HCl = 1.008 + 35.45 = 36.458 gram per mol
The calculations are shown below:

= 
Now we will use ideal gas equation to calculate the volume.
n = 0.672 mol
T = 25 + 273 = 298 K
P = 101.3 kPa = 1 atm
R = 
PV = nRT
1(V) = (0.672)(0.0821)(298)
V = 16.4 L
From calculations, 16.4 L of hydrogen gas are formed and so the correct choice is C.
Answer:
37.98 kPa.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and T are constant, and have different values of P and V:
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
P₁ = 101.3 kPa, V₁ = 1.5 L,
P₂ = ??? kPa, V₂ = 4.0 L.
- Applying in the above equation
<em>(P₁V₁) = (P₂V₂)</em>
<em></em>
<em>∴ P₂ = (P₁V₁)/V₂</em> = (101.3 kPa)(1.5 L)/(4.0 L) = <em>37.98 kPa.</em>
I think the answer would be the number of electron in pairs that is around the central atom. This is the most general principle in determining structure of a molecule. Electrons are the ones responsible in bonding with other atoms. Hope this helped.