Answer:
saturated fats
Explanation:
bcoz it is solid at room temperature and does not have double bonds between carbons
Answer:
1. Tropical Climate
Explanation:
Due to the high heat in tropical climates, the moisture speeds up chemical weathering
Answer:
Part A is just T2 = 58.3 K
Part B ∆U = 10967.6 x C
You can work out C
Part C
Part D
Part E
Part F
Explanation:
P = n (RT/V)
V = (nR/P) T
P1V1 = P2V2
P1/T1 = P2/T2
V1/T1 = V2/T2
P = Pressure(atm)
n = Moles
T = Temperature(K)
V = Volume(L)
R = 8.314 Joule or 0.08206 L·atm·mol−1·K−1.
bar = 0.986923 atm
N = 14g/mol
N2 Molar Mass 28g
n = 3.5 mol N2
T1 = 350K
P1 = 1.5 bar = 1.4803845 atm
P2 = 0.25 bar = 0.24673075 atm
Heat Capacity at Constant Volume
Q = nCVΔT
Polyatomic gas: CV = 3R
P = n (RT/V)
0.986923 atm x 1.5 = 3.5 mol x ((0.08206 L atm mol -1 K-1 x 350 K) / V))
V = (nR/P) T
V = ((3.5 mol x 0.08206 L atm mol -1 K-1)/(1.5 x 0.986923 atm) )x 350K
V = (0.28721/1.4803845) x 350
V = 0.194 x 350
V = 67.9036 L
So V1 = 67.9036 L
P1V1 = P2V2
1.4803845 atm x 67.9036 L = 0.24673075 x V2
100.52343693 = 0.24673075 x V2
V2 = P1V1/P2
V2 = 100.52343693/0.24673075
V2 = 407.4216 L
P1/T1 = P2/T2
1.4803845 atm / 350 K = 0.24673075 atm / T2
0.00422967 = 0.24673075 /T2
T2 = 0.24673075/0.00422967
T2 = 58.3 K
∆U= nC
∆T
Polyatomic gas: C
= 3R
∆U= nC
∆T
∆U= 28g x C
x (350K - 58.3K)
∆U = 28C
x 291.7
∆U = 10967.6 x C
Carbon can react with oxygen to form carbon dioxide. Which of the following statements about this chemical change is true? ... Carbon and oxygen atoms are destroyed as new atoms are formed. Carbon and oxygen atoms have the same properties as molecules of carbon dioxide.
Answer:
C. 1.3 mol
Explanation:
PV = nRT
where P is absolute pressure,
V is volume,
n is number of moles,
R is universal gas constant,
and T is absolute temperature.
Given:
P = 121.59 kPa
V = 31 L
T = 360 K
R = 8.3145 L kPa / mol / K
Find: n
n = PV / (RT)
n = (121.59 kPa × 31 L) / (8.3145 L kPa / mol / K × 360 K)
n = (3769.29 L kPa) / (2993.22 L kPa / mol)
n = 1.26 mol
Round to two significant figures, there are 1.3 moles of gas.