<u>We are given:</u>
M1 = 3 Molar V1 = 80 mL
M2 = x Molar V2 = 100 mL
<u>Finding the molarity:</u>
We know that:
M₁V₁ = M₂V₂
where V can be in any units
(3)(80) = (x)(100)
x = 240/100 [dividing both sides by 100]
x = 2.4 Molar
The enthalpy<span> of </span>solution<span>, </span>enthalpy<span> of dissolution, or heat of </span>solution<span> is the</span>enthalpy<span> change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution. The </span>enthalpy<span> of </span>solution<span> is most often expressed in kJ/mol at constant temperature. </span>
Answer:
If something is in a solid state of matter, it has a definite shape and volume. The volume of an object is the amount of space it occupies. A block of wood placed on a table retains its shape and volume, therefore, it is an example of a solid. If a liquid is poured on that same table, there are very different results
Explanation:
E=hf
h=6.63*10^-34
f=8.66*10^14
E=6.63*10^-34*8.66*10^14=57.4*10^-20 joules