For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
The cations and anions being oppositely charged attract each other through strong coloumbic forces and form an ionic bond.
(1) Sodium is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(2) Sodium is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(3) Sodium is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(4) Sodium is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. Thus they combine and their oxidation states are exchanged and written in simplest whole number ratios to give neutral .
(5) Potassium is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. They form .
(6) Potassium is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(7) Potassium is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(8) Potassium is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(9) Calcium is carrying +2 charge called as cation and chloride is an anion carrying -1 charge. They form .
(10) Calcium is carrying +2 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(11) Calcium is carrying +2 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(12) Calcium is carrying +2 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(13) Ammonium ion is carrying +1 charge called as cation and chloride is an anion carrying -1 charge. They form .
(14) Ammonium ion is carrying +1 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(15) Ammonium ion is carrying +1 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(16) Ammonium ion is carrying +1 charge called as cation and carbonate is an anion carrying -2 charge. They form .
(17) Iron is carrying +3 charge called as cation and chloride is an anion carrying -1 charge. They form .
(18) Iron is carrying +3 charge called as cation and phosphate is an anion carrying -3 charge. They form .
(19) Iron is carrying +3 charge called as cation and sulfate is an anion carrying -2 charge. They form .
(20) Iron is carrying +3 charge called as cation and carbonate is an anion carrying -2 charge. They form .
allows for you to account for only the weight of the substance being measured and not the vessel it’s being measured in.
Explanation:
What does it mean to tare a balance and why do you think it is important to complete this before you begin measuring mass? Explanation: The term tare is used when weighing chemicals on a balance, using the tare button allows for you to account for only the weight of the substance being measured and not the vessel it’s being measured in.
The data has a mistake in one of the values there. I believe the mistake is on the hydrogen. So, I'm going to assume the value of Hydrogen is 0.6%, so the total percent composition would be 100.1% (Something better). All you have to do is replace the correct value of H (or the value with the mistaken option) and do the same procedure.
Now, to calculate the empirical formula, we can do this in three steps.
<u>Step 1. Calculate the amount in moles of each element.</u>
In these case, we just divide the percent composition with the molar mass of each one of them:
Ca: 22.3 / 40.078 = 0.5564
As: 41.6 / 74.9216 = 0.5552
O: 35.6 / 15.9994 = 2.2251
H: 0.6 / 1.00794 = 0.5953
Now that we have done this, let's calculate the ratio of mole of each of them. This is doing dividing the smallest number of mole between each of the moles there. In this case, the moles of As are the smallest so:
Ca: 0.5564/0.5552 = 1.0022
As: 0.5552/0.5552 = 1
O: 2.2251/0.5552 = 4.0077
H: 0.5953/0.5552 = 1.0722
Now, we round those numbers, and that will give us the number of atoms of each element in the empirical formula
<u>Step 3. Write the empirical formula with the rounded numbers obtained</u>
Answer: Na2O+H2O=2NaOH Step by step exp. Given: Equation Na2O+H2O=NaOH To find: Balance the equation Solution: Taking LHS of the equation LHS=Na2O+H2O There is 2 sodium, 2 oxygen,& 2 hydrogen To balance the equation we have equal number of atom so we multply 2 to the RHS=2NaOH There fore the equation form is Na2O+H2O=2NaOH