Answer:
58.44 g/mol
Explanation:
In this problem, make sure to remember that volume is measured in mL, L or any other units of volume. Remember that g represents grams, and grams is a measure of mass.
However, independent of what mass or what volume we take, molar mass is known to be an intensive property. That is, molar mass doesn't depend on any external conditions or any measurements.
Molar mass solely depends on the chemical structure of a compound and is a constant number at any given conditions.
In this problem, we are given sodium chloride, NaCl. In order to find its molar mass, we need to refer to the periodic table, find the atomic masses of Na and Cl and then add them up to have the molar mass of NaCl:

Answer:
1-ethyl-2-methyl cyclopropane.
Explanation:
- The structure of the molecule will be as shown in the attached image.
- The molecular formula of the compound is C₆H₁₂.
- It has 3 membered ring with 3 C atoms and two substituents one of them with one C atom (methyl) and the other with 2 C atoms (ethyl).
- The ring consist of 3 C atoms, so its name is cyclo propane.
- We numbering the atoms of the ring that give the ethyl substituent the low no. (1) and then methyl group take no. (2).
- <em>Thus, the name of the compound is 1-ethyl-2-methyl cyclopropane.</em>
Answer:
In every sequence even numbers are added in order.
3, 5, 9, 15, 23, 33
The chemical reaction would be:
C3H8 + 5O2 = 3CO2 + 4H2O
For this case, we assume that gas is ideal thus in every 1 mol the volume would be 22.41 L. We calculate as follows:
28.7 L C3H8 ( 1 mol / 22.41 L ) ( 4 mol H2O / 1 mol C3H8 ) ( 18.02 g / mol ) = 92.31 g H2O produced
Hope this answers the question.
Answer:
Individual solute particles are broken apart from the solid by the;
c. Solvent
Explanation:
A solution is the homogeneous mixture that is made up of two or more substances formed by dissolving a substance which can be a solid, liquid or gas in another substance known as the solvent which normally the larger part of the fraction of the solution than the solute and can also be a solid, liquid or a gas
In a solution the solvent particles serves to brake of and disperser parts of a solid solute to form a more or less homogeneous mixture
Therefore, the solute particles are broken by the <u>solvent</u> particles in a solution