Answer:
soluble starch, maltose and various dextrins.
Explanation:
Answer:
Option B. 4 moles of the gaseous product
Explanation:
Data obtained from the question include:
Initial volume (V1) = V
Initial number of mole (n1) = 2 moles
Final volume (V2) = 2V
Final number of mole (n2) =..?
Applying the Avogadro's law equation, we can obtain the number of mole of the gaseous product as follow:
V1/n1 = V2/n2
V/2 = 2V/n2
Cross multiply
V x n2 = 2 x 2V
Divide both side by V
n2 = (2 x 2V)/V
n2 = 2 x 2
n2 = 4 moles
Therefore, 4 moles of the gaseous product were produced.
So the unbalanced equation would be Mg + N^2 --> Mg^3N^2
Which means the balanced equation would be 3Mg + N^2 --> Mg^3N^2
This is balance the equation out since you now has 3 magnesium and 2 nitrogen on the left side, and 3 magnesium on 2 nitrogen on the right. Double check my work though, it's been awhile.
Alpha partical is a He nucleus. When decaying alpha particle mass is reduced by 4 and atomic number is reduced by 2.
The actual element which has 102 protons is No (Nobelium).
Since it has 167 neutrons, the mass = protons + neutrons = 102 + 167 = 269
after an alpha decay, the new element formed has 100 protons which is Fm ( Fermium)
the alpha decaying equation is,
₁₀₂²⁶⁹No → ₁₀₀²⁶⁵Fm + ₂⁴α + heat
the total mass and the atomic number( numbe rof protons) must be equal in both sides.