Answer:
A. 30.38°
B 5.04N
Explanation:
Using
F= ILBsin theta
2 .55N= 8.4Ax 0.5mx 1.2T x sintheta
Theta = 30.38°
B. If theta is 90°
Then
F= 8.4Ax 0.5mx 1.2x sin 90°
F= 5.04N
Send wave from your location to the object and wait until echo is back.
Measure the time taken.
If you know the speed of wave (say sound wave), than just multiply by half time taken wave to return
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
Answer:
Explanation:
Work
Other units Foot-pound, Erg
In SI base units 1 kg⋅m2⋅s−2
Derivations from other quantities W = F ⋅ s W = τ θ
Dimension M L2 T−2
Idk if this is what u are looking for but i hope this help.:)
Answer:
Explanation:
Momentum change for either skater is mΔv = 75.0(5.0) = 375 kg•m/s
As a change in momentum is equal to an impulse
375 = FΔt
F = 375/0.100 = 3750 N
As 3750 N < 4500 N no bones are broken.