Answer:
The fluids speed at a)
and b)
are
and
respectively
c) Th volume of water the pipe discharges is:
Explanation:
To solve a) and b) we should use flow continuity for ideal fluids:
(1)
With Q the flux of water, but Q is
using this on (1) we have:
(2)
With A the cross sectional areas and v the velocities of the fluid.
a) Here, we use that point 2 has a cross-sectional area equal to
, so now we can solve (2) for
:

b) Here we use point 2 as
:

c) Here we need to know that in this case the flow is the volume of water that passes a cross-sectional area per unit time, this is
, so we can write:
, solving for V:

Answer
Given,
Energy absorbed, 
Energy expels,
Temperature of cold reservoir, T = 27°C
a) Efficiency of engine



b) Work done by the engine



c) Power output
t = 0.296 s



The correct answer is C, right-side up and smaller.
It is the most common example of spherical mirrors. The inside of the spoon acts like a concave mirror and the back side of it like a convex mirror.
A convex mirror always forms a real and diminished image. That is, the image formed is erect or right-side up and smaller in size. Therefore, Lin Yao should describe her reflection on the back side of the mirror to be right-side up and smaller.
Answer: Resting Membrane Potential
Explanation:
The <u>resting membrane potential</u> refers to the difference in voltage between the inside and outside of the cell membrane when the cell is at physiological rest. It should be noted that <u>the cell membrane is a selective semipermeable barrier, which only allows the transit through it of certain molecules and prevents the transit of others.
</u>
This selectivity causes an uneven distribution of charged particles (ions), as the membrane only accepts some types of ions.
Now, in the case of neurons, which are electrically excitable nerve cells; the transport of electrical signals is due to these changes in the permeability and asymmetric distribution of ions (mainly sodium and potassium) when the neuron is not excited (at rest).
Velocity increases with speed