Answer:
Though the process photosynthesis
Explanation:
One of the important ways by which the atmosphere recycle gases through interactions with the the biosphere is by photosynthesis.
The biosphere is the living component on the earth. The atmosphere is the gaseous envelope round the earth.
- Photosynthesis is the process whereby green plants manufacture their food using carbon dioxide and water in the presence of sunlight to produce glucose and oxygen gas.
- This way, atmospheric carbon dioxide is exchanged for oxygen gas.
This way, there is a sustained interaction between the atmosphere and biosphere.
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature

262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K 
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s

A)
Number for the first strips is equal to


Calculating heat transfer coefficient from the first strip


The rate of convection heat transfer from the first strip is

The rate of convection heat transfer from the fifth trip is equal to


Calculating 

The rate of convection heat transfer from the tenth strip is


Calculating

Calculating the rate of convection heat transfer from the tenth strip

The rate of convection heat transfer from 25th strip is equal to

Calculating 

Calculating 

Calculating the rate of convection heat transfer from the tenth strip

Answer:
Yes, it's correct
Explanation:
Newton's second Law states that the acceleration of an object is proportional to the net force applied on it, according to the equation:

where
F is the net force on the object
m is the mass of the object
a is the acceleration of the object
We can re-arrange the previous equation in order to solve explicitely for a, the acceleration, and we find:

So, we see that the acceleration is proportional to the net force and inversely proportional to the mass of the object.
Answer:
<em>Magnetic</em><em> </em><em>compass</em><em> </em><em>helps</em><em> </em><em>to </em><em>identify</em><em> </em><em>direction</em><em> </em><em>in </em><em>this </em><em>way </em><em>,</em><em> </em><em>this </em><em>compass</em><em> </em><em>work </em><em>because</em><em> </em><em>of </em><em>earth</em><em> </em><em>magnetic</em><em> field</em><em> </em><em>and </em><em>show</em><em> </em><em>us </em><em>direction</em><em> </em>
<em> </em><em> </em><em>hope</em><em> it</em><em> helps</em><em> and</em><em> your</em><em> day</em><em> will</em><em> be</em><em> full</em><em> of</em><em> happiness</em><em>. </em>^_^
Answer: 2.94×10^8 J
Explanation:
Using the relation
T^2 = (4π^2/GMe) r^3
Where v= velocity
r = radius
T = period
Me = mass of earth= 6×10^24
G = gravitational constant= 6.67×10^-11
4π^2/GMe = 4π^2 / [(6.67x10^-11 x6.0x10^24)]
= 0.9865 x 10^-13
Therefore,
T^2 = (0.9865 × 10^-13) × r^3
r^3 = 1/(0.9865 × 10^-13) ×T^2
r^3 = (1.014 x 10^13) × T^2
To find r1 and r2
T1 = 120min = 120*60 = 7200s
T2 = 180min = 180*60= 10800s
Therefore,
r1 = [(1.014 x 10^13)7200^2]^(1/3) = 8.07 x 10^6 m
r2 = [(1.014 x 10^13)10800^2]^(1/3) = 10.57 x 10^6 m
Required Mechanical energy
= - GMem/2 [1/r2 - 1/r1]
= (6.67 x 10^-11 x 6.0 x 10^24 * 50)/2 * [(1/8.07 × 10^-6 )- (1/10.57 × 10^-6)]
= (2001 x 10^7)/2 * (0.1239 - 0.0945)
= (1000.5 × 10^7) × 0.0294
= 29.4147 × 10^7 J
= 2.94 x 10^8 J.