Answer:
The answer to your question is 88.7 ml
Explanation:
Data
Volume = ?
Concentration of NaOH = 0.142 M
Volume of H₂C₄H₄O₆ = 21.4 ml
Concentration of H₂C₄H₄O₆ = 0.294 M
Balanced chemical reaction
2 NaOH + H₂C₄H₄O₆ ⇒ Na₂C₄H₄O₆ + 2H₂O
1.- Calculate the moles of H₂C₄H₄O₆
Molarity = moles/volume
Solve for moles
moles = Molarity x volume
Substitution
moles = 0.294 x 21.4/1000
Result
moles = 0.0063
2.- Use proportions to calculate the moles of NaOH
2 moles of NaOH ------------------ 1 moles of H₂C₄H₄O₆
x ------------------ 0.0063 moles
x = (0.0063 x 2) / 1
x = 0.0126 moles of NaOH
3.- Calculate the volume of NaOH
Molarity = moles / volume
Solve for volume
Volume = moles/Molarity
Substitution
Volume = 0.0126/0.142
Result
Volume = 0.088 L or 88.7 ml
If you can have more than 1 answer then the dependent variable is graphed on the Y-axis and and is usually used for comparison since they are usually the experiment results. If you can only have one answer then the dependent variable is graphed on the y-axis.
The molarity of a solution is the number of moles of a substance in one liter of that substance.
The molar mass of ammonium sulfate (NH4)2SO4 is 132.14 grams/mole
Calculate the moles of ammonium sulfate:
(4.50 grams)/(132.14 grams/mole) = 0.0341 moles of ammonium sulfate
convert mL to Liters 250. mL becomes 0.250 liters
Take the number of moles over the number of liters
0.0341 moles / 0.250 liters = 0.136 molar or 0.136M = molarity of the solution
Answer:
who lives in Barclays what?? this makes no sense
Explanation
Explanation:
The given cell reaction is as follows.

Hence, reactions taking place at the cathode and anode are as follows.
At anode ; Oxidation-half reaction :
...... (1)
At cathode; Reduction-half reaction :
....... (2)
Hence, balance the half reactions by multiplying equation (1) by 2 and equation (2) by 3.
Therefore, net cell reaction is as follows.

Net reaction: 
Thus, we can conclude that the overall cell reaction is as follows.
