In terms of the most common type of salt, sodium chloride, NaCl is the chemical formula of this salt,
The answer would be 76.752 .
For #1, I'd say it's "It will usually bond to multiple atoms which can provide a total of 4 additional electrons."
2. Ionic (I'm quite certain because anions/cations (-1 & +1) are Ionic from what I recall, if that's true it's Ionic.
3. "comparison of the associated families to which the elements belong" and
"the difference in electronegativities" are what I would choose, as I mentioned in a comment earlier.
If I'm wrong let me know, but I am at least 80% sure that these responses are correct from what I remember in Chemistry.
Answer:
0.0303 Liters
Explanation:
Given:
Mass of the potassium hydrogen phosphate = 0.2352
Molarity of the HNO₃ Solution = 0.08892 M
Now,
From the reaction it can be observed that 1 mol of potassium hydrogen phosphate reacts with 2 mol of HNO₃
The number of moles of 0.2352 g of potassium hydrogen phosphate
= Mass / Molar mass
also,
Molar mass of potassium hydrogen phosphate
= 2 × (39.09) + 1 + 30.97 + 4 × 16 = 174.15 g / mol
Number of moles = 0.2352 / 174.15 = 0.00135 moles
thus,
The number of moles of HNO₃ required for 0.00135 moles
= 2 × 0.00135 mol of HNO₃
= 0.0027 mol of HNO₃
Now,
Molarity = Number of Moles / Volume
thus,
for 0.0027 mol of HNO₃, we have
0.08892 = 0.0027 / Volume
or
Volume = 0.0303 Liters
Answer is: ph value is 3.56.
Chemical reaction 1: H₂CO₃(aq) ⇄ HCO₃⁻(aq) + H⁺(aq); Ka₁ = 4,3·10⁻⁷.
Chemical reaction 2: HCO₃⁻(aq) ⇄ CO₃²⁻(aq) + H⁺(aq); Ka₂ = 5,6·10⁻¹¹.
c(H₂CO₃) = 0,18 M.
[HCO₃⁻] = [H⁺<span>] = x.
</span>[H₂CO₃] = 0,18 M - x.
Ka₁ = [HCO₃⁻] · [H⁺] / [H₂CO₃].
4,3·10⁻⁷ = x² / (0,18 M -x).
Solve quadratic equation: x = [H⁺] =0,000293 M.
pH = -log[H⁺] = -log(0,000293 M).
pH = 3,56; second Ka do not contributes pH value a lot.