Chemical reaction (dissociation) 1: C₂O₄H₂(aq) ⇄ C₂O₄H⁻(aq) + H⁺(aq).
Chemical reaction (dissociation) 2: C₂O₄H⁻(aq) ⇄ C₂O₄²⁻(aq) + H⁺(aq).
c(C₂O₄H⁻) = c(H⁺) = x.
c(C₂O₄H₂) = 0.0269 M.
pKa₁ = 1.23.
Ka₁ = 10∧(-1.23) = 0.059.
Ka₁ = c(C₂O₄H⁻) · c(H⁺) / c(C₂O₄H₂).
0.059 = x² / (0.0269 M - x).
Solve quadratic eqaution: x = c(H⁺) = 0.02 M.
pH = -log(0.02 M) = 1.7.
The reaction equation is: CaF₂ + H₂SO₄ → 2HF + CaSO₄
The molar ratio between fluorite and hydrogen fluoride is 1 : 1.
The moles of fluorite supplied are:
Moles = 15 / 78.07 Moles = 0.200
The moles of hydrogen fluoride produced will be 0.2.Now, we may use the ideal gas equation to determine the temperature:
PV = nRT T = PV/nR
T = (875 * 8.63) / (0.2 * 62.36)
T = 605.45K
The temperature will be 331.85 °C which is required to store the gas in an 8.63-L container at 875 torr.
To know more about ideal gas equation here
brainly.com/question/6776000
#SPJ4
Answer:
option b is the correct answer