1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
2 years ago
9

t%20%5Clarge%20Distance%20%20%5C%3A%20Formula%20%5C%3A%20%20%20%5C%5C%20%20%5Clarge%20%5Ctt%20and%20%5C%5C%20%5Clarge%5Ctt%20%20%5C%3A%20Coordinate%20%20%5C%3A%20Proof%20%5Cend%7Barray%7D%7D%7D" id="TexFormula1" title=" \boxed{\boxed{ \begin{array}{}\large\tt The \\ \tt \large Distance \: Formula \: \\ \large \tt and \\ \large\tt \: Coordinate \: Proof \end{array}}}" alt=" \boxed{\boxed{ \begin{array}{}\large\tt The \\ \tt \large Distance \: Formula \: \\ \large \tt and \\ \large\tt \: Coordinate \: Proof \end{array}}}" align="absmiddle" class="latex-formula">
Direction: Find the distance between each pair of points on the coordinate plane and write the solution.


1. A(3, 8) and B(3, -2)

2. O(5, -2) and K(7, -2)

3. L(4, -4) and M(-4, 6)

4. P(5, 1) and C(2, 3)

5. Q(-10, 9) and R(-2, 3)

\boxed{\boxed{ \begin{array}{}\large\tt Nonsense + Useless \\   \large \tt= Report! \end{array}}}
​
Mathematics
2 answers:
larisa86 [58]2 years ago
8 0

Distance formula

\boxed{\sf \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}}

Now

#1

\\ \tt\Rrightarrow AB=\sqrt{(3-3)^2+(-2-8)^2}=\sqrt{100}=10units

#2

\\ \tt\Rrightarrow OK=\sqrt{(5-7)^2+(-2+2)^2}=\sqrt{4}=2units

#3

\\ \tt\Rrightarrow LM=\sqrt{(-4-4)^2+(6+4)^2}=\sqrt{64+100}=\sqrt{164}\approx 13units

#4

\\ \tt\Rrightarrow PC=\sqrt{(5-2)^2+(1-3)^2}=\sqrt{9+4}=\sqrt{13}=3.2units

#5

\\ \tt\Rrightarrow QR=\sqrt{(-2+10)^2+(3-9)^2}=\sqrt{64+36}=\sqrt{100}=10units

RUDIKE [14]2 years ago
7 0

Answer:

Answer of all given questions are given below :

  • 1) AB = 10 units
  • 2) OK = 2 units
  • 3) LM = 2√41 units
  • 4) PC ≈ 3.6 units
  • 5) QR = 10 units

Step-by-step explanation:

Here's the required formula to find distance between points :

\star{\small{\underline{\boxed{\sf{\red{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}}}

According to this formula, we'll solve all the given questions and find the distance between points.

1. A(3, 8) and B(3, -2)

Substituting all the given values in the formula to find the distance between points:

{\implies{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}

{\implies{\small{\sf{AB = \sqrt{\Big(3 - 3 \Big)^{2} + \Big( - 2 - 8 \Big)^{2}}}}}}

{\implies{\small{\sf{AB = \sqrt{\Big(0\Big)^{2} + \Big(  - 10 \Big)^{2}}}}}}

{\implies{\small{\sf{AB = \sqrt{\Big(0 \times 0\Big) + \Big(  - 10 \times  - 10 \Big)}}}}}

{\implies{\small{\sf{AB = \sqrt{\big(0 + 100\big)}}}}}

{\implies{\small{\sf{AB = \sqrt{100}}}}}

{\implies{\sf{\underline{\underline{\purple{AB = 10}}}}}}

Hence, the distance between points AB is 10 units..

\begin{gathered}\end{gathered}

2. O(5, -2) and K(7, -2)

Substituting all the given values in the formula to find the distance between points:

{\longrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}

{\longrightarrow{\small{\sf{OK = \sqrt{\Big(7 - 5\Big)^{2} + \Big( - 2  + 2 \Big)^{2}}}}}}

{\longrightarrow{\small{\sf{OK = \sqrt{\Big(2\Big)^{2} + \Big(0 \Big)^{2}}}}}}

{\longrightarrow{\small{\sf{OK = \sqrt{\Big(2 \times 2\Big) + \Big(0 \times 0 \Big)}}}}}

{\longrightarrow{\small{\sf{OK = \sqrt{\big(4 + 0 \big)}}}}}

{\longrightarrow{\small{\sf{OK = \sqrt{4}}}}}

{\longrightarrow{\sf{\underline{\underline{\pink{OK = 2}}}}}}

Hence, the distance between points OK is 2 units.

\begin{gathered}\end{gathered}

3. L(4, -4) and M(-4, 6)

Substituting all the given values in the formula to find the distance between points:

{\longmapsto{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}

{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 4 - 4\Big)^{2}  +  \Big( 6 + 4 \Big)^{2}}}}}}

{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 8\Big)^{2}  +  \Big(10 \Big)^{2}}}}}}

{\longmapsto{\small{\sf{LM = \sqrt{\Big( - 8 \times  - 8\Big) +  \Big(10  \times 10\Big)}}}}}

{\longmapsto{\small{\sf{LM = \sqrt{\big( 64 + 100\big)}}}}}

{\longmapsto{\small{\sf{LM = \sqrt{164}}}}}

{\longmapsto{\sf{\underline{\underline{\orange{LM = 2 \sqrt{41} }}}}}}

Hence, the distance between points LM is 2√41 units.

\begin{gathered}\end{gathered}

4. P(5, 1) and C(2, 3)

Substituting all the given values in the formula to find the distance between points:

{\dashrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}

{\dashrightarrow{\small{\sf{PC = \sqrt{\Big(2 - 5 \Big)^{2} + \Big(3  - 1 \Big)^{2}}}}}}

{\dashrightarrow{\small{\sf{PC = \sqrt{\Big( - 3\Big)^{2} + \Big(2\Big)^{2}}}}}}

{\dashrightarrow{\small{\sf{PC = \sqrt{\Big( - 3 \times  - 3\Big) + \Big(2 \times 2\Big)}}}}}

{\dashrightarrow{\small{\sf{PC = \sqrt{\big( 9 + 4\big)}}}}}

{\dashrightarrow{\small{\sf{PC = \sqrt{13}}}}}

{\dashrightarrow{\sf{\underline{\underline{\green{PC \approx 3.6}}}}}}

Hence, the distance between points PC is 3.6 units.

\begin{gathered}\end{gathered}

5. Q(-10, 9) and R(-2, 3)

Substituting all the given values in the formula to find the distance between points:

{\twoheadrightarrow{\small{\sf{Distance = \sqrt{\Big(x_{2} - x_{1} \Big)^{2} + \Big(y_{2} - y_{1} \Big)^{2}}}}}}

{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( - 2 + 10 \Big)^{2} + \Big(3 - 9 \Big)^{2}}}}}}

{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( 8 \Big)^{2} + \Big( - 6\Big)^{2}}}}}}

{\twoheadrightarrow{\small{\sf{QR = \sqrt{\Big( 8 \times 8 \Big)+ \Big( - 6 \times  - 6\Big)}}}}}

{\twoheadrightarrow{\small{\sf{QR = \sqrt{\big(64  + 36\big)}}}}}

{\twoheadrightarrow{\small{\sf{QR = \sqrt{100}}}}}

{\twoheadrightarrow{\sf{\underline{\underline{\blue{QR = 10}}}}}}

Hence, the distance between points QR is 10 units.

\rule{300}{2.5}

You might be interested in
"Match the inequality with its graph below.
Svetllana [295]
<span>The answers for the given inequalities shown in the figures above are the following: 
1. x+2y is bigger than or equal to 6 corresponds to the first graph.
2. x-2y>4 corresponds to the third graph.
3. y>3+(1/2)x corresponds to the second graph
4. 4y+2x is smaller than or equal to 16 corresponds to the fourth graph</span>
3 0
3 years ago
6% of a value is 510
Dennis_Churaev [7]

Answer:

The value is 8500

Step-by-step explanation:

Of means multiply and is means equals

6% * V = 510

Change percent to decimal form

.06V = 510

Divide each side by .06

V = 510/.06

V =8500

6 0
3 years ago
Read 2 more answers
Tina’s bedroom is in the shape of a rectangular prism 15 feet long, 12 feet wide, and 10 feet high. It has no windows. Tina want
Tanya [424]

Answer:

720ft²

Step-by-step explanation:

Wall 1&2 = lh = 15*10=150

Wall 3&4 = wh = 12*10=120

Ceiling = lw = 12*15=180

120+150+120+150+180=720ft²

7 0
3 years ago
From the given figure, find the value of x and y:<br>pls pls pls answer my question​
yKpoI14uk [10]

Answer:

have a great day

god is great

6 0
3 years ago
Solve the rational equation 1/n-4 - 2/n = 3/4-n
Leokris [45]

Answer:

n=4

Step-by-step explanation:

Given equation: \[\frac{1}{n-4}-\frac{2}{n}=\frac{3}{4-n}\]

Simplifying the Left Hand Side of the equation by taking the LCM of the denominator terms:

\[\frac{n}{n*(n-4)}-\frac{2*(n-4)}{n*(n-4)}=\frac{3}{4-n}\]

=> \[\frac{n - 2*(n-4)}{n*(n-4)}=\frac{3}{4-n}\]

=> \[\frac{n - 2n + 8}{n*(n-4)}=\frac{3}{4-n}\]

=> \[\frac{8 - n}{n*(n-4)}=\frac{3}{4-n}\]

=> \[(8-n)*(4-n) =n*(n-4)*3\]

=> \[n-8 =3n\]

=> \[2n =8\]

=> n = 4

5 0
3 years ago
Other questions:
  • Claire has a hot tub with a diameter of 7 feet. She wants to purchase a cover to protect the hot tub. What is the area
    6·2 answers
  • Find the value of B
    5·2 answers
  • Help with this please
    15·2 answers
  • Find the slope and the y-intercept of the following: y = 3/4x-5
    9·2 answers
  • What is 4 x 8 help please
    6·2 answers
  • Domino's Pizza cuts their Large pizza into 8 equal slices. What is the area of one of the slices if diameter is 16 inches?
    7·2 answers
  • 15 POINTS-
    12·1 answer
  • Who invited math?? Please answer!!!!!
    12·1 answer
  • Which of the following best approximates the line of the best fit
    7·1 answer
  • You are in charge of planning a reunion party for your high school alumni. The food will cost $12 per person. The rental fee for
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!