Answer:

Step-by-step explanation:
Blue Marbles =5
Pink Marbles =3
Total =3+5=8
Probability of drawing two marbles with replacement
=P(First Blue Marble AND Second Blue Marble)
=P(First Blue Marble) X P(Second Blue Marble)

Answer:
The population of bacteria can be expressed as a function of number of days.
Population =
where n is the number of days since the beginning.
Step-by-step explanation:
Number of bacteria on the first day=![\[5 * 2^{0} = 5\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B0%7D%20%3D%205%5C%5D)
Number of bacteria on the second day = ![\[5 * 2^{1} = 10\]](https://tex.z-dn.net/?f=%5C%5B5%20%2A%202%5E%7B1%7D%20%3D%2010%5C%5D)
Number of bacteria on the third day = ![\[5*2^{2} = 20\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B2%7D%20%3D%2020%5C%5D)
Number of bacteria on the fourth day = ![\[5*2^{3} = 40\]](https://tex.z-dn.net/?f=%5C%5B5%2A2%5E%7B3%7D%20%3D%2040%5C%5D)
As we can see , the number of bacteria on any given day is a function of the number of days n.
This expression can be expressed generally as
where n is the number of days since the beginning.
Answer:
I assume that the function is:

Now let's describe the general transformations that we need to use in this problem.
Reflection across the x-axis:
For a general function f(x), a reflection across the x-axis is written as:
g(x) = -f(x)
Reflection across the y-axis:
For a general function f(x), a reflection across the y-axis is written as:
g(x) = f(-x)
Then a reflection across the y-axis, and then a reflection across the x-axis is just:
g(x) = -(f(-x)) = -f(-x)
In this case, we have:

then:

Now we can graph this, to get the graph you can see below:
Answer:
10,080 minutes
Step-by-step explanation:
First find how many minutes are in a day. There are 60 in an hour and there are 24 hours in a day so multiply 60 by 24 to get 1,440. So there are 1440 minutes in a day. Multiply 1440 by 7 to get 10,080.