1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
3 years ago
15

Caculate the monthly payment for a 5 year car loan of $23,570 at 10.48% interest, compounded monthly

Mathematics
2 answers:
PilotLPTM [1.2K]3 years ago
8 0
The answer is d hope this helps
Radda [10]3 years ago
3 0

Answer:

D

Step-by-step explanation:

You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
Please simplify picture attached
Mekhanik [1.2K]

Answer:

It is the first bubble.

Step-by-step explanation:

multiply the fraction \frac{\sqrt{5} }{\sqrt{} 5}

multiply the numerators and denominators seperatly

calculate the product

multiply the numbers

solution

3 0
3 years ago
Read 2 more answers
The diagram shows a square divided into strips of equal width. Three strips are black and two are grey. What fraction of the per
astra-53 [7]
2/5 at the top nd bottom, but 0/5 on the sides. So 2/5 + 0/5= 1/5
8 0
3 years ago
Drag the item from the item bank to its corresponding match
Morgarella [4.7K]
You are converting the numbers to a word problem.

1. 5+x = the number five plus x

2.  5-x= the number 5 minus x

3. 5x= five times x

4. 5/x= five divided by x

5. three-fourths of x plus 2

6. two minus three-fourths of x

7. 3 times x plus 10

8. ten times x plus three
5 0
4 years ago
Help me please this is due tommorow morning
svlad2 [7]

Answer:

S: (-2,7)

T: (-5,7)

U: (-1,8)

7 0
3 years ago
Read 2 more answers
Other questions:
  • There is a bag filled with 4 blue and 5 red marbles. A marble is taken at random from the bag, the colour is noted and then it i
    15·1 answer
  • F(x)= 1/2x^2-4x+3 in standard form
    9·1 answer
  • Please. Answer Fast! Use composition to determine if G(x) or H(x) is the inverse of F(x) for the
    12·1 answer
  • Can anyone pls helppppp
    14·1 answer
  • ) All human blood can be typed as one of O, A, B, or AB. The distribution of the type varies a bit with race. For African-Americ
    14·1 answer
  • At store A, apples are $3.99 for 5 apples. At store B, apples are $20 for 10 apples. Which is the better deal?​
    12·2 answers
  • Ayúdenme con esta multiplicación de polinomio por favor<br><br> (2×+3y)(-4ײy-2×y²)
    11·1 answer
  • I need help on this question
    12·2 answers
  • Is the correct? I not really sure.​
    5·2 answers
  • Lamy can paint 84 portraits in 6 weeks. at this rate , how many portraits can he paint in 2 weeks
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!