It sounds as though the two people are standing in front of the boat on opposite sides of it, so that they both make an angle of 30.0° with the axis of the boat, as in the attached free body diagram (ignoring the force of buoyancy and the weight of the boat).
By Newton's second law, the net vertical force is
∑ <em>F</em> = <em>P</em>₁ sin(60.0°) + <em>P</em>₂ sin(120.0°) - <em>R</em> = 0
where upward is positive and downward is negative, and the right side is 0 because the boat moves with constant velocity and thus zero acceleration.
We're told that <em>P</em>₁ = <em>P</em>₂ = 600 N, and we know sin(60°) = sin(120°), so the above reduces to
<em>R</em> = 2 <em>P</em> sin(60.0°) = 2 (600 N) sin(60.0°) ≈ 1040 N
If you sight Polaris at 20 degrees above your Northern Horizon then you know that your latitude is 20 degrees north of the equator.
Answer:
I know half on number one it is repulsive
Explanation:
If each lightbulb is identical they should have approximately the same resistance therefore the voltage would be split equally so the Voltage over each light bulb would be 3V.
Answer:
F = 2074.13 lb
Explanation:
Given that,
Mass of car, m = 2800 lb = 1270.059 kg
Initial speed, u = 5 mi/h = 2.2352 m/s
Final speed, v = - 1.5 mi/h = -0.67056 m/s (in opposite direction)
Time, t = 0.4 s
We need to find the magnitude of the average horizontal force (lb) exerted on the car during the impact. It can be calculated as :

or
F = -2074.13 lb
So, the required force is 2074.13 lb.