Answer:
a. Object A
Explanation:
The mass of an object implies the quantity of matter in it, while the weight is the amount of gravitational force applied on an object.
The object A has a mass of 25 lbs, but object B on the earth has a weight, W, of 25 N.
So that,
For object A on the moon, mass = 25 lbs
For object B on the earth, W = 25 N,
W = m x g
25 = m x 10 (g = 10 m/
)
m = 
= 2.5 lbs
Mass of object B is 2.5 lbs.
Therefore, the mass of the object A is more than that of B.
Answer:

Explanation:
The torque of a force is given by:

where
F is the magnitude of the force
d is the distance between the point of application of the force and the centre of rotation of the system
is the angle between the direction of the force and d
In this problem, we have:
, the force
, the distance of application of the force from the centre (0,0)
, the angle between the direction of the force and a
Therefore, the torque is

So we want to know what will happen if we put a magnetically soft material in a strong magnetic field. A magnetically soft material is a material whose magnetic field can easily be reversed. Those are ferromagnetic materials. Iron is such a material. When a magnetically soft material is placed into a strong magnetic field it gets its own magnetic field. But its not a permanent magnetic field, it can be changed by a different strong magnetic field.
Answer: 170.67 N
Explanation:
Given
Mass of skier is 
Height of the inclination is 
Here, the potential energy of the skier is converted into kinetic energy which is consumed by the friction force by applying a constant force that does work to stop the skier.
![\Rightarrow mgh=F\cdot x\quad \quad [\text{F=constant friction force}]\\\\\Rightarrow 82.9\times 9.8\times 20=F\cdot 95.2\\\\\Rightarrow F=\dfrac{16,248.4}{95.2}\\\\\Rightarrow F=170.67\ N](https://tex.z-dn.net/?f=%5CRightarrow%20mgh%3DF%5Ccdot%20x%5Cquad%20%5Cquad%20%5B%5Ctext%7BF%3Dconstant%20friction%20force%7D%5D%5C%5C%5C%5C%5CRightarrow%2082.9%5Ctimes%209.8%5Ctimes%2020%3DF%5Ccdot%2095.2%5C%5C%5C%5C%5CRightarrow%20F%3D%5Cdfrac%7B16%2C248.4%7D%7B95.2%7D%5C%5C%5C%5C%5CRightarrow%20F%3D170.67%5C%20N)
Thus, the horizontal friction force is 170.67 N.
Answer:
A factor of 2*4 = 8
Explanation:
F_g = (G*m1*m2)/r^2
where m1 and m2 are the two masses, G is Newton's gravitational constant, and r is the distance between the center of mass of the two objects.
So, if you double m1 and quadruple m2:
m1' = 2*m1
m2' = 4*m2
Then F_g' = (G*m1'*m2')/r^2 = (G*2*m1*4*m2)/r^2 = 8*(G*m1*m2)/r^2 = 8*F_g