Q= mcΔT
Where Q is heat or energy
M is mass, c is heat capacitance and t is temperature
You have to convert Celsius into kelvin in order to use this formula I believe
Celsius + 273 = Kelvin
21 + 273 = 294K
363 + 273 = 636K
Now...
Q= (0.003)(0.129)(636-294)
Q= 0.132 J if you are using kilograms, in terms of grams which seems more appropriate the answer would be 132J of energy.
Answer:
kinetic
Explanation:
kinetic energy is powered by motion or gravity the steeper the hill is the faster a ball will roll
Answer:
The natural medium emanating from the Sun and other very hot sources (now recognised as electromagnetic radiation with a wavelength of 400-750 nm), within which vision is possible.
Explanation:
just the way it is
Answer:
73.72
Explanation:
For this subtraction problem, the answer or solution is expressed to the least precise of the numbers we are trying to subtract.
The least precise number is the number with the lowest significant numbers:
105.4 - 31.681
105.4 has 4 significant numbers
31.681 has 5 significant numbers
So;
105.4
- 31.681
------------------
73.719
----------------
The solution is therefore 73.72
The correct option is C.
When the temperature of an object that is giving off light is increased, the particles in the object will move at a faster rate and there will be increased vibration of these molecules. This will makes the object to emit more light and to shine more brightly. Thus, the higher the temperature, the brighter the light that will be emitted.