Answer:
The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
Explanation:
Given that,
Frequency of sound wave = 240 Hz
Distance = 46.0 m
Distance of fork = 14 .0 m
We need to calculate the path difference
Using formula of path difference

Put the value into the formula


We need to calculate the wavelength
Using formula of wavelength

Put the value into the formula


We need to calculate the phase difference
Using formula of the phase difference

Put the value into the formula



Hence, The phase difference between the reflected waves when they meet at the tuning fork is 159.29 rad.
8 x 10^8 = 800,000,000
In Scientific Notation, your goal is to get your the number you're multiplying by 10 (8 in this case) to be between 0 and 10. Therefore, you would NOT have 80 x 10^7 because 80 is not between 0 and 10.
Answer:
option (B)
Explanation:
Intensity of unpolarised light, I = 25 W/m^2
When it passes from first polarisr, the intensity of light becomes

Let the intensity of light as it passes from second polariser is I''.
According to the law of Malus

Where, θ be the angle between the axis first polariser and the second polariser.

I'' = 11.66 W/m^2
I'' = 11.7 W/m^2
An electric circuit is anything in which electric current flows. Typically it refers to things with wiring like the electronics in your phone, but it can be made of anything that conducts electricity.
Say you have a battery, it basically has a bunch of electrons under a potential (think of gas in a tank under pressure), but the only way for the electrons to move is to move through a conductor, which are molecules with loosely held electrons. If you take a copper wire and touch each end to the two terminals you’ve completed an electric circuit because the electrons can now flow. But you can also put things partway through the wire like a lightbulb, which when the electrons run through it generates light.