Answer:
T₂ = 317.87 K
Explanation:
Given data:
Initial pressure = 15 atm
Final pressure = 16 atm
Initial temperature = 298 K
Final temperature = ?
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
15 atm / 298K = 16 atm/T₂
T₂ = 16atm × 298 K / 15 atm
T₂ = 4768 atm. K / 15 atm
T₂ = 317.87 K
This is given by Avogagro number: 1 mol = 6.02*10^23 particles
Then you can do whichever to these two relations, because they are equivalent:
- 1mol / 6.02*10^23 representative particles, and
- 6.02*10^23 representative particle /1 mol
Only the second option of the question includes one of the valid conversion factors. Then, the conversion factor of the second option is the right answer
The end product will depend upon
a) the amount of the reagent taken
b) the final treatment of the reaction
If we have just taken methylmagnesium iodide and p-hydroxyacetophenone, then we will get methane and hydroxyl group substituted with MgI in place of hydrogen
Figure 1
However if we have taken excess of methylmagnesium iodide which is Grignard's reagent followed by hydrolysis we will get different product
Figure 2
The particles that make up the atomic nucleus of all atoms are both protons and neutrons.
The amount of Al2O3 in moles= 1.11 moles while in grams = 113.22 grams
<em><u>calculation</u></em>
2 Al + Fe2O3 → 2Fe + Al2O3
step 1: find the moles of Al by use of <u><em>moles= mass/molar mass </em></u>formula
= 60.0/27= 2.22 moles
Step 2: use the mole ratio to determine the moles of Al2O3.
The mole ratio of Al : Al2O3 is 2: 1 therefore the moles of Al2O3= 2.22/2=1.11 moles
Step 3: finds the mass of Al2O3 by us of <u><em>mass= moles x molar mass</em></u><em> </em>formula.
The molar mass of Al2O3 = (2x27) +( 16 x3) = 102 g/mol
mass is therefore= 102 g/mol x 1.11= 113.22 grams