To find the zeros of a quadratic fiunction given the equation you can use the next quadratic formula after equal the function to 0:
![\begin{gathered} ax^2+bx+c=0 \\ \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ax%5E2%2Bbx%2Bc%3D0%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5Cend%7Bgathered%7D)
For the given function:

![x=\frac{-(-10)\pm\sqrt[]{(-10)^2-4(2)(-3)}}{2(2)}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B-%28-10%29%5Cpm%5Csqrt%5B%5D%7B%28-10%29%5E2-4%282%29%28-3%29%7D%7D%7B2%282%29%7D)
![x=\frac{10\pm\sqrt[]{100+24}}{4}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B100%2B24%7D%7D%7B4%7D)
![\begin{gathered} x=\frac{10\pm\sqrt[]{124}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2\cdot2\cdot31}}{4} \\ \\ x=\frac{10\pm\sqrt[]{2^2\cdot31}}{4} \\ \\ x=\frac{10\pm2\sqrt[]{31}}{4} \\ \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B124%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5Ccdot2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm%5Csqrt%5B%5D%7B2%5E2%5Ccdot31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x%3D%5Cfrac%7B10%5Cpm2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_1=\frac{10}{4}+\frac{2\sqrt[]{31}}{4} \\ \\ x_1=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_1%3D%5Cfrac%7B10%7D%7B4%7D%2B%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_1%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} x_2=\frac{10}{4}-\frac{2\sqrt[]{31}}{4} \\ \\ x_2=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x_2%3D%5Cfrac%7B10%7D%7B4%7D-%5Cfrac%7B2%5Csqrt%5B%5D%7B31%7D%7D%7B4%7D%20%5C%5C%20%20%5C%5C%20x_2%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Then, the zeros of the given quadratic function are:
![\begin{gathered} x=\frac{5}{2}+\frac{\sqrt[]{31}}{2} \\ \\ x_{}=\frac{5}{2}-\frac{\sqrt[]{31}}{2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20x%3D%5Cfrac%7B5%7D%7B2%7D%2B%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5C%5C%20%20%5C%5C%20x_%7B%7D%3D%5Cfrac%7B5%7D%7B2%7D-%5Cfrac%7B%5Csqrt%5B%5D%7B31%7D%7D%7B2%7D%20%5Cend%7Bgathered%7D)
Answer: Third option
Answer: 63/16 = 3 1/16 or 7 if your divide it
Step-by-step explanation:
The <em>echo</em> number 20222022202220222022 is the <em>perfect</em> square of 4496890281.
<h3>What echo number is a perfect square</h3>
An <em>echo</em> number has a <em>perfect</em> square if its square root is also a <em>natural</em> number. After some iterations we found that <em>echo</em> number 20222022202220222022 is a <em>perfect</em> square:

The <em>echo</em> number 20222022202220222022 is the <em>perfect</em> square of 4496890281. 
To learn more on natural numbers, we kindly invite to check this verified question: brainly.com/question/17429689
Yes, 19/4 is only 4/3/4 so you still have 1/4 ft left to fill
A² + b² = c²
a² = c² - b²
a² = 9² - 6²
a² = 81 - 36
a² = 45
a = √45
a ≈ 6.7082
a = 6.7