r(t) models the water flow rate, so the total amount of water that has flowed out of the tank can be calculated by integrating r(t) with respect to time t on the interval t = [0, 35]min
∫r(t)dt, t = [0, 35]
= ∫(300-6t)dt, t = [0, 35]
= 300t-3t², t = [0, 35]
= 300(35) - 3(35)² - 300(0) + 3(0)²
= 6825 liters
Answer:
because potentil energy is redy to go but its bound up
And kinetic energy is in motion
Explanation:
You can use the impulse momentum theorem and just subtract the two momenta.
P1 - P2 = (16-1.2)(11.5e4)=1702000Ns
If you first worked out the force and integrated it over time the result is the same
Answer:

Explanation:
Given

Required
Rewrite using scientific notation
The format of a number in scientific notation is

Where 
So the given parameter can be rewritten as

Express as a power of 10

Hence, the equivalent of the mass of the sun in scientific notation is:

Answer:
The displacement in t = 0,
y (0) = - 0.18 m
Explanation:
Given f = 40 Hz , A = 0.25m , μ = 0.02 kg / m, T = 20.48 N
v = √ T / μ
v = √20.48 N / 0.02 kg /m = 32 m/s
λ = v / f
λ = 32 m/s / 40 Hz = 0.8
K = 2 π / λ
K = 2π / 0.8 = 7.854
φ = X * 360 / λ
φ = 0.5 * 360 / 0.8 = 225 °
Using the model of y' displacement
y (t) = A* sin ( w * t - φ )
When t = 0
y (0) = 0.25 m *sin ( w*(0) - 225 )
y (0) = 0.25 * -0.707
y (0) = - 0.18 m