The statement that would beat describe an Arrhenius acid would be the second Option. It produces H+ ions in solution. The other definitions would be suitable for Arrhenius base, Bronsted Lowry Acid/Base, and Lewis Base.
This uses the concept of freezing point depression. When faced with this issue, we use the following equation:
ΔT = i·Kf·m
which translates in english to:
Change in freezing point = vant hoff factor * molal freezing point depression constant * molality of solution
Because the freezing point depression is a colligative property, it does not depend on the identity of the molecules, just the number of them.
Now, we know that molality will be constant, and Kf will be constant, so our only unknown is "i", or the van't hoff factor.
The van't hoff factor is the number of atoms that dissociate from each individual molecule. The higher the van't hoff factor, the more depressed the freezing point will be.
NaCl will dissociate into Na+ and Cl-, so it has i = 2
CaCl2 will dissociate into Ca2+ and 2 Cl-, so it has i = 3
AlBr3 will dissociate into Al3+ and 3 Br-, so it has i = 4
Therefore, AlBr3 will lower the freezing point of water the most.
Explanation:
Mass of compounds = Moles of compound × Molecular mass of compound
a) Moles of LiCl = 2.345 mol
Molecular mass of LiCl = 42.5 g/mol
Mass of 2.345 moles of LiCl = 2.345 mol × 42.5 g/mol = 99.6625 g
b) Moles of acetylene = 0.0872 mol
Molecular mass of acetylene= 26 g/mol
Mass of 0.0872 moles acetylene= 0.0872 mol × 26 g/mol = 2.2672 g
c) Moles of sodium carbonate= 
Molecular mass of sodium carbonate= 106 g/mol
Mass of
sodium carbonate
=
= 3.498 g
d) Moles of fructose = 
Molecular mass fructose= 180 g/mol
Mass of
fructose
= 
e) Moles of 
Molecular mass of 
Mass of
fructose
= 
False
FM is typically limited to 30-40 miles while AM can go up to about 1000 miles
Answer:
Produce CO2 = Both
Produces oxygen = Both
Use CO2 in photosynthesis = Both
Use O2 in cellular respiration = Both
Hope this helps! :)