A compound is considered a pure substance meaning there is only one type of particle in the substance. A mixture is a combination of two or more different chemical pot compound or an element or substances. It is not a pure substance but I combination of multiple particles
Answer:
35.9 ml
Explanation:
Start with the balanced equation:
3CuCl2(aq)+2Na3PO4(aq)→Cu3(PO4)2(s)+6NaCl(aq)
This tells us that 3 moles of CuCI2 react with 2 moles Na3PO4-
∴ 1 mole CuCl2 will react with 2/3 moles Na3PO4
We know that concentration = moles/volume i.e:
c= n/v
∴n=c×v
∴nCuCl2=0.107×91.01000=9.737×10−3
I divided by 1000 to convert ml to L
∴nNa3PO4=9.737×10−3×23=6.491×10−3
v=nc=6.491×10−30.181=35.86×10−3L
∴v=35.86ml
Answer:
I think it's 6 moles are produced
<span>Pre-1982 definition of STP: 37 g/mol
Post-1982 definition of STP: 38 g/mol
This problem is somewhat ambiguous because the definition of STP changed in 1982. Prior to 1982, the definition was 273.15 K at a pressure of 1 atmosphere (101325 Pascals). Since 1982, the definition is 273.15 K at a pressure of exactly 100000 Pascals). Because of those 2 different definitions, the volume of 1 mole of gas is either 22.414 Liters (pre 1982 definition), or 22.71098 liters (post 1982 definition). And finally, there's entirely too many text books out there that still use the 35 year obsolete definition. So let's solve this problem using both definitions and you need to pick the correct answer for the text book you're using.
First, determine how many moles of gas you have. Just simply divide the volume you have by the molar volume.
Pre-1982: 2.1 / 22.414 = 0.093691443 moles
Post-1982: 2.1 / 22.71098 = 0.092466287 moles
Now determine the molar mass. Simply divide the mass by the moles. So
Pre-1982: 3.5 g / 0.093691443 moles = 37.35666667 g/mol
Post-1982: 3.5 g / 0.092466287 moles = 37.85163333 g/mol
Finally, round to 2 significant figures. So
Pre-1982: 37 g/mol
Post-1982: 38 g/mol</span>
1.50x10^6 m2 is the answer you're looking for