Lets work backwards, he had $5 after it all, and spent $1.25 on a snack, so we add that to the remainder, which is $6.25. then he spent half of that on whatever stuff he likes, so add $6.25 and $6.25, which is $12.50
1.5x + 0.2y = 2.68....multiply by 0.3
1.6x + 0.3y = 2.98...multiply by - 0.2
------------------------
0.45x + 0.06y = 0.804 (result of multiplying by 0.3)
- 0.32x - 0.06y = - 0.596 (result of multiplying by - 0.2)
----------------------add
0.13x = 0.208
x = 0.208/0.13
x = 1.6
1.5x + 0.2y = 2.68
1.5(1.6) + 0.2y = 2.68
2.4 + 0.2y = 2.68
0.2y = 2.68 - 2.4
0.2y = 0.28
y = 0.28/0.2
y = 1.4
solution (they intersect at) (1.6,1.4)
Answer:
<h2>25</h2>
Step-by-step explanation:
The rate of change of number of tree y on x branches of a tree is expressed as shown;
m = Δy/Δx where;
m is the rate of change
Δy is the change in number of leaves between 3 and 4
Δx is change in number of branches between 3 and 4
m = Δy/Δx = y₂-y₁/x₂-x₁
From table between 3 and 4, y₂ = 100, y₁ = 75, x₂ = 4, x₁ = 3
m = 100-75/4-3
m = 25/1
m = 25
<em>Hence the rate of change between 3 and 4 branches is 25</em>
i believe it is 1/3. but check other sources as well.
So distribute using distributive property
a(b+c)=ab+ac so
split it up
(5x^2+4x-4)(4x^3-2x+6)=(5x^2)(4x^3-2x+6)+(4x)(4x^3-2x+6)+(-4)(4x^3-2x+6)=[(5x^2)(4x^3)+(5x^2)(-2x)+(5x^2)(6)]+[(4x)(4x^3)+(4x)(-2x)+(4x)(6)]+[(-4)(4x^3)+(-4)(-2x)+(-4)(6)]=(20x^5)+(-10x^3)+(30x^2)+(16x^4)+(-8x^2)+(24x)+(-16x^3)+(8x)+(-24)
group like terms
[20x^5]+[16x^4]+[-10x^3-16x^3]+[30x^2-8x^2]+[24x+8x]+[-24]=20x^5+16x^4-26x^3+22x^2+32x-24
the asnwer is 20x^5+16x^4-26x^3+22x^2+32x-24