1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Reika [66]
2 years ago
11

Can a triangle have sides with the given lengths? Explain.

Mathematics
1 answer:
Amiraneli [1.4K]2 years ago
7 0

Answer:

Option A.

Step-by-step explanation:

12 cm, 17cm, 25 cm

You might be interested in
6. Devin Kinney and his friend Darrion
shutvik [7]
Why did georage washantion write that he was walking on untrodden ground
8 0
3 years ago
Part
Goryan [66]
Honestly I don’t even know
4 0
3 years ago
Need answer with full work
tatyana61 [14]

Answer:

Step-by-step explanation:

x^2 - 17x - 60

(x - 20)(x + 3)

x^2 + 3x - 20x - 60

x^2 - 17x - 60

(x + 20) is not one of the factors

using F.O.I.L., it would have been

x^2 + 17x - 60

4 0
3 years ago
A) Evaluate the limit using the appropriate properties of limits. (If an answer does not exist, enter DNE.)
Gelneren [198K]

For purely rational functions, the general strategy is to compare the degrees of the numerator and denominator.

A)

\displaystyle \lim_{x\to\infty} \frac{2x^2-5}{7x^2+x-3} = \boxed{\frac27}

because both numerator and denominator have the same degree (2), so their end behaviors are similar enough that the ratio of their coefficients determine the limit at infinity.

More precisely, we can divide through the expression uniformly by <em>x</em> ²,

\displaystyle \lim_{x\to\infty} \frac{2x^2-5}{7x^2+x-3} = \lim_{x\to\infty} \frac{2-\dfrac5{x^2}}{7+\dfrac1x-\dfrac3{x^2}}

Then each remaining rational term converges to 0 as <em>x</em> gets arbitrarily large, leaving 2 in the numerator and 7 in the denominator.

B) By the same reasoning,

\displaystyle \lim_{x\to\infty} \frac{5x-3}{2x+1} = \boxed{\frac52}

C) This time, the degree of the denominator exceeds the degree of the numerator, so it grows faster than <em>x</em> - 1. Dividing a number by a larger number makes for a smaller number. This means the limit will be 0:

\displaystyle \lim_{x\to-\infty} \frac{x-1}{x^2+8} = \boxed{0}

More precisely,

\displaystyle \lim_{x\to-\infty} \frac{x-1}{x^2+8} = \lim_{x\to-\infty}\frac{\dfrac1x-\dfrac1{x^2}}{1+\dfrac8{x^2}} = \dfrac01 = 0

D) Looks like this limit should read

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t}+t^2}{3t-t^2}

which is just another case of (A) and (B); the limit would be

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t}+t^2}{3t-t^2} = -1

That is,

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t}+t^2}{3t-t^2} = \lim_{t\to\infty}\frac{\dfrac1{t^{3/2}}+1}{\dfrac3t-1} = \dfrac1{-1} = -1

However, in case you meant something else, such as

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t+t^2}}{3t-t^2}

then the limit would be different:

\displaystyle \lim_{t\to\infty}\frac{\sqrt{t^2}\sqrt{\dfrac1t+1}}{3t-t^2} = \lim_{t\to\infty}\frac{t\sqrt{\dfrac1t+1}}{3t-t^2} = \lim_{t\to\infty}\frac{\sqrt{\dfrac1t+1}}{3-t} = 0

since the degree of the denominator is larger.

One important detail glossed over here is that

\sqrt{t^2} = |t|

for all real <em>t</em>. But since <em>t</em> is approaching *positive* infinity, we have <em>t</em> > 0, for which |<em>t</em> | = <em>t</em>.

E) Similar to (D) - bear in mind this has the same ambiguity I mentioned above, but in this case the limit's value is unaffected -

\displaystyle \lim_{x\to\infty} \frac{x^4}{\sqrt{x^8+9}} = \lim_{x\to\infty}\frac{x^4}{\sqrt{x^8}\sqrt{1+\dfrac9{x^8}}} = \lim_{x\to\infty}\frac{x^4}{x^4\sqrt{1+\dfrac9{x^8}}} = \lim_{x\to\infty}\frac1{\sqrt{1+\dfrac9{x^8}}} = \boxed{1}

Again,

\sqrt{x^8} = |x^4|

but <em>x</em> ⁴ is non-negative for real <em>x</em>.

F) Also somewhat ambiguous:

\displaystyle \lim_{x\to\infty}\frac{\sqrt{x+5x^2}}{3x-1} = \lim_{x\to\infty}\frac{\sqrt{x^2}\sqrt{\dfrac1x+5}}{3x-1} = \lim_{x\to\infty}\frac{x\sqrt{\dfrac1x+5}}{3x-1} = \lim_{x\to\infty}\frac{\sqrt{\dfrac1x+5}}{3-\dfrac1x} = \dfrac{\sqrt5}3

or

\displaystyle \lim_{x\to\infty}\frac{\sqrt{x}+5x^2}{3x-1} = \lim_{x\to\infty}x \cdot \lim_{x\to\infty}\frac{\dfrac1{\sqrt x}+5x}{3x-1} = \lim_{x\to\infty}x \cdot \lim_{x\to\infty}\frac{\dfrac1{x^{3/2}}+5}{3-\dfrac1x} = \frac53\lim_{x\to\infty}x = \infty

G) For a regular polynomial (unless you left out a denominator), the leading term determines the end behavior. In other words, for large <em>x</em>, <em>x</em> ⁴ is much larger than <em>x</em> ², so effectively

\displaystyle \lim_{x\to\infty}(x^4-2x) = \lim_{x\to\infty}x^4 = \boxed{\infty}

6 0
3 years ago
Dr. Wellbee advised his patients to drink 8 eight-ounce glasses of water every day for every 50 pounds of weight. If Kelby weigh
Sever21 [200]

A right triangle has a 30o angle. The leg adjacent to the 30o angle measures 25 inches.

What is the length of the other leg? Round to the nearest tenth.

14.4 in.21.7 in.28.9 in.<span>43.3 in.</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • Factorise 2x^2 - 3x -2 &lt; 0
    12·1 answer
  • Membership to a music club costs $165. Members
    5·1 answer
  • What are the answers
    10·1 answer
  • Currently offering 100 points.
    10·2 answers
  • hey everyone! Can anyone give me free Cambridge Checkpoint Mathematics Teacher's resource grade 8 pdf. I will mark u brainliest!
    14·1 answer
  • Math questions plss mark u brainlist
    5·1 answer
  • Kelly runs a distance of 100 metres in a time of 10.52 seconds.
    15·1 answer
  • Tell whether the pair of polygons is similar. Explain why or why not.
    15·1 answer
  • 1)
    6·1 answer
  • Write and solve an equation to find the unknown side length x (in inches).
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!