It is false they focus on far more important things also.
Complete Question:
Andy and Charlie are riding on a merry-go-round. Andy rides on a horse at the outer rim of the circular platform, twice as far from the center of the circular platform as Charlie, who rides on an inner horse. When the merry-go-round is rotating at a constant angular speed, which of the following best describes Andy's angular speed?'
( ) twice Charlie’s
( ) impossible to determine.
( ) the same as Charlie’s
( ) half of Charlie’s
Answer:
The same as Charlie's
Explanation:
As a merry-go-round is a rigid body, all points in the rotating body must have the same angular velocity, i.e., thet must rotate the same angle in the same time.
Otherwise, the distance between any pair of points on a given radius could be different in different times, which is not possible in a rigid body,
Answer: 0.5A
Explanation:
According to Ohm's law, the Voltage(V) when a current flows through a resistor can be calculated by using the formula:
V = IR
where,
V = Voltage = 200V
I = current in amps (A)
R = resistance in ohms (Ω) = 400Ω
Current = Voltage / Resistance
I = V/R
I = 200/400
I = 0.5A
Therefore, the current is 0.5 Ampere
Answer:
Explanation:
Given that on the tree the gravitational energy stored is 8J
Then, mgh = 8J.
The apple begins to fall and hit the ground, what is the maximum kinetic energy?
Using conservation of energy, as the above is about to hit the ground, the apple is at is maximum speed, and the height then is 0m, so the potential energy at the ground is zero, so all the potential of the apple at the too of the tree is converted to kinetic energy as it is about to hits the ground. Along the way to the ground, both the Kinetic energy and potential energy is conserved, it is notice that at the top of the tree, the apple has only potential energy since velocity is zero at top, and at the bottom of the tree the apple has only kinetic energy since potential energy is zero(height=0)
So,
K.E(max) = 8J
A pure substance is a substance that is made with only one type of molecule