Given:
F_gravity = 10 N
F_tension = 25 N
Let's find the net centripetal force exterted on the ball.
Apply the formula:

From the given figure, the force acting towards the circular path will be positive, while the force which points directly away from the center is negative.
Hence, the tensional force is positive while the gravitational force is negative.
Thus, we have:

Therefore, the net centripetal force exterted on the ball is 15 N.
ANSWER:
15 N
Answer:
λ1 = 0.0129m = 1.29cm
λ2 = 0.00923m = 0.92 cm
Explanation:
To find the distance between the first order bright fringe and the central peak, can be calculated by using the following formula:
(1)
m: order of the bright fringe = 1
λ: wavelength of the light = 660 nm, 470 nm
D: distance from the screen = 5.50 m
d: distance between slits = 0.280mm = 0.280 *10^⁻3 m
ym: height of the m-th fringe
You replace the values of the variables in the equation (1) for each wavelength:
For λ = 660 nm = 660*10^-9 m

For λ = 470 nm = 470*10^-9 m

Find the average speed and the average velocity.
Average speed = distance / time
distance = 10 x 8000 m = 80,000 m
time = 20 min * 60 s/min = 1200 s
Average speed = 80,000 m / 1200 s = 66.67 m/s
Average velocity = displacement / time
Given that the race car made complete circles the final poin is the same initial point, then its displacement is zero and the average velocity is zero too.
You can solve this using the equation k=mv^2. k is the kinetic energy, m is the mass, and is the velocity. k=30(3.4)^2, so the answer is 346.8 J.