Answer:
I_syst = 278.41477 kg.m²
Explanation:
Mass of platform; m1 = 117 kg
Radius; r = 1.61 m
Moment of inertia here is;
I1 = m1•r²/2
I1 = 117 × 1.61²/2
I1 = 151.63785 kg.m²
Mass of person; m2 = 62.5 kg
Distance of person from centre; r = 1.05 m
Moment of inertia here is;
I2 = m2•r²
I2 = 62.5 × 1.05²
I2 = 68.90625 kg.m²
Mass of dog; m3 = 28.3 kg
Distance of Dog from centre; r = 1.43 m
I3 = 28.3 × 1.43²
I3 = 57.87067 kg.m²
Thus,moment of inertia of the system;
I_syst = I1 + I2 + I3
I_syst = 151.63785 + 68.90625 + 57.87067
I_syst = 278.41477 kg.m²
Answer:
B. coefficient
Explanation:
i dont have to explain right?
it can be said that the speed of the east wind is
v=0.3608m/s
From the question we are told
A small boat sailed <u>straight </u>north out of a harbor in <em>strong </em>east wind (blowing from west to east).
After sailing for 120 minutes, it ended up hitting a buoy 60^\circ60 ∘ to the north-east of the harbor. If the straight-line distance between the buoy and the harbor is 3 km,
- what is the speed of the east wind?.
<h3> the speed of the east wind</h3>
Generally the equation for the distance is mathematically given as
BA=3000sin60
BA=2598.07m
Therefore
the speed of the east wind

v=0.3608
For more information on this visit
brainly.com/question/22568180
You should come off like would you like to hang out sometime