Answer:
111.5 m
Explanation:
Given that You are driving to the grocery store at 14 m/s. You are 115 m from an intersection when the traffic light turns red. Assume that your reaction time is 0.50 s and that your car brakes with constant acceleration.
Use first equation of motion
V = U - at
Since the car is going to rest, V = 0 and a = negative
0 = 14 - a × 0.5
0.5a = 14
a = 14 /0.5
a = 28 m/s^2
Let us use second equation of motion
S = Ut - 1/2at^2
S = 14 × 0.5 - 0.5 × 28 × 0.5^2
S = 7 - 3.5
S = 3.5 m
115 - 3.5 = 111.5
Therefore, you are 111.5 metres from the intersection (in m) when you begin to apply the brakes.
When a satellite is revolving into the orbit around a planet then we can say
net centripetal force on the satellite is due to gravitational attraction force of the planet, so we will have


now we can say that kinetic energy of satellite is given as


also we know that since satellite is in gravitational field of the planet so here it must have some gravitational potential energy in it
so we will have

so we can say that energy from the fuel is converted into kinetic energy and gravitational potential energy of the satellite
Answer:
B
Explanation:
You always want to test as many samples as possible
Answer:
Distance = 345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]
Explanation:
We can solve this problem by using Newton's universal gravitation law.
In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m
![r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]](https://tex.z-dn.net/?f=r_%7Be%7D%20%3D%20distance%20earth%20to%20the%20astronaut%20%5Bm%5D.%5C%5Cr_%7Bm%7D%20%3D%20distance%20moon%20to%20the%20astronaut%20%5Bm%5D%5C%5Cr_%7Bt%7D%20%3D%20total%20distance%20%3D%203.84%2A10%5E8%5Bm%5D)
Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.
Mathematically this equals:

![F_{m} =G*\frac{m_{m}*m_{a} }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]](https://tex.z-dn.net/?f=F_%7Bm%7D%20%3DG%2A%5Cfrac%7Bm_%7Bm%7D%2Am_%7Ba%7D%20%20%7D%7Br_%7Bm%7D%20%5E%7B2%7D%20%7D%20%5C%5Cwhere%3A%5C%5CG%20%3D%20gravity%20constant%20%3D%206.67%2A10%5E%7B-11%7D%5B%5Cfrac%7BN%2Am%5E%7B2%7D%20%7D%7Bkg%5E%7B2%7D%20%7D%20%5D%20%5C%5Cm_%7Be%7D%3D%20earth%27s%20mass%20%3D%205.98%2A10%5E%7B24%7D%5Bkg%5D%5C%5C%20m_%7Ba%7D%3D%20astronaut%20mass%20%3D%20100%5Bkg%5D%5C%5Cm_%7Bm%7D%3D%20moon%27s%20mass%20%3D%207.36%2A10%5E%7B22%7D%5Bkg%5D)
When we match these equations the masses cancel out as the universal gravitational constant

To solve this equation we have to replace the first equation of related with the distances.

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.
![r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c } }{2*a}\\ where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) } }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]](https://tex.z-dn.net/?f=r_%7Bm1%2C2%7D%3D%5Cfrac%7B-b%2B-%20%5Csqrt%7Bb%5E%7B2%7D-4%2Aa%2Ac%20%7D%20%20%7D%7B2%2Aa%7D%5C%5C%20%20where%3A%5C%5Ca%3D80.25%5C%5Cb%3D768%2A10%5E%7B6%7D%20%5C%5Cc%20%3D%20-1.47%2A10%5E%7B17%7D%20%5C%5Creplacing%3A%5C%5Cr_%7Bm1%2C2%7D%3D%5Cfrac%7B-768%2A10%5E%7B6%7D%2B-%20%5Csqrt%7B%28768%2A10%5E%7B6%7D%29%5E%7B2%7D-4%2A80.25%2A%28-1.47%2A10%5E%7B17%7D%29%20%7D%20%20%7D%7B2%2A80.25%7D%5C%5C%5C%5Cr_%7Bm1%7D%3D%2038280860.6%5Bm%5D%20%5C%5Cr_%7Bm2%7D%3D-2.97%2A10%5E%7B17%7D%20%5Bm%5D)
We work with positive value
rm = 38280860.6[m] = 38280.86[km]
<u>Second part</u>
<u />
The distance between the Earth and this point is calculated as follows:
re = 3.84 108 - 38280860.6 = 345719139.4[m]
Now the acceleration can be found as follows:
![a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2} } \\a=3.33*10^{19} [m/s^2]](https://tex.z-dn.net/?f=a%20%3D%20G%2A%5Cfrac%7Bm_%7Be%7D%20%7D%7Br_%7Be%7D%20%5E%7B2%7D%20%7D%20%5C%5Ca%20%3D%206.67%2A10%5E%7B11%7D%20%2A%5Cfrac%7B5.98%2A10%5E%7B24%7D%20%7D%7B%28345.72%2A10%5E%7B6%7D%29%5E%7B2%7D%20%20%7D%20%5C%5Ca%3D3.33%2A10%5E%7B19%7D%20%5Bm%2Fs%5E2%5D)
Well there has to have a altering linear position