We make use of the equation: v^2=v0^2+2a Δd. We substitute v^2 equals to zero since the final state is halting the truck. Hence we get the equation -<span>v0^2/2a = Δd. F = m a from the second law of motion. Rearranging, a = F/m
</span>F = μ Fn where the force to stop the truck is the force perpendicular or normal force multiplied by the static coefficient of friction. We substitute, -v0^2/2<span>μ Fn/m</span> = Δd. This is equal to
Answer:
Option D
490 J
Explanation:
When at a height of 100 am above and released, the ball initially posses only potential energy. When it falls, some potential energy is converted to kinetic energy.
Initial potential energy= mgh where m is the mass, g is the acceleration due to gravity and h is height. Substituting 1 Kg for m, 9.81 for g and 100 m for h then
PE initial = 1*9.81*100= 981 J
At 50 m, PE will be 1*9.81*50=490.5 J
Subtracting PE at 50 m from initial PE we get the energy that has been converted to kinetic energy hence
981-490.5= 490.5 J
Approximately, 490 J
Answer:
a.Distance = 150 m
b. Displacement = 50 m
Time lapsed = 5 seconds
Explanation:
a. Distance is the change in the position of an object.
The distance covered by the car = 100 + 50
= 150 m
b. Since displacement is a vector quantity,
Displacement of the car = 100 - 50
= 50 m due east
c. Time elapsed is the time taken for the motion of the car starting from when its starts to when it stops.
Thus, the time elapsed = 4 + 1
= 5 seconds
Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m