Explanation:
Sorry I don't know the answer
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,

Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,



Now the second expression will be,



Dividing the two expression we have,

Solving for v, we have,

Therefore the speed of the train before and after slowing down is 22.12m/s
Answer:
b
Explanation:
i took the quiz i think its right
The electromagnetic spectrum includes a continuous spectrum of wavelengths that include:
Radio waves, microwaves, infrared light, visible, ultraviolet, X-rays, gamma rays
The wavelength decreases from radio waves to gamma rays, whereas the energy increases along the same direction.
In the given example, radio waves have a lower energy and higher wavelength than visible light. The latter can be perceived by the human eye, whereas radio waves are not visible to the human eye.
1) They have colors = visible light
2) They can travel in a vacuum = both
3) They have energy = both
4) They’re used to learn about dust and gas clouds = radio waves
5) They’re used to find the temperature of stars = visible light
6)They’re invisible = radio waves
Answer:
mph
Explanation:
= Speed of bird in still air
= Speed of wind = 44 mph
Consider the motion of the bird with the wind
= distance traveled with the wind = 9292 mi
= time taken to travel the distance with wind
Time taken to travel the distance with wind is given as

eq-1
Consider the motion of the bird with the wind
= distance traveled against the wind = 6060 mi
= time taken to travel the distance against wind
Time taken to travel the distance against wind is given as

eq-2
As per the question,
Time taken with the wind = Time taken against the wind





mph