1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
2 years ago
15

A 300 cm rope under a tension of 120 N is set into oscillation. The mass density of the rope is 120 g/cm. What is the frequency

of the first harmonic mode (m
Physics
1 answer:
Vikki [24]2 years ago
5 0

Answer:

Explanation:

f = \sqrt{T/(m/L)} / 2L

T = 120 N

L = 3.00 m

(m/L) = 120 g/cm(100 cm/m / 1000 g/kg) = 12 kg/m

                                                  (wow that's massive for a "rope")

f = \sqrt{120/12} /(2(3)))

f = \sqrt{10\\}/6 = 0.527 Hz

This is a completely silly exercise unless this "rope" is in space somewhere as the weight of the rope (353 N on earth) far exceeds the tension applied.

A much more reasonable linear density would be 120 g/m resulting in a frequency of √1000/6 = 5.27 Hz on a rope that weighs only 3.5 N

You might be interested in
The car travels 25 miles in the first 0.5 hours
Westkost [7]

Answer:

\huge\boxed{\sf v = 50\ miles / hr}

Explanation:

<u>Given Data:</u>

Distance = S = 25 miles

Time = t = 0.5 hours

<u>Required:</u>

Speed = v = ?

<u>Formula:</u>

v = S/t

<u>Solution:</u>

v = 25 / 0.5

v = 50 miles / hr

\rule[225]{225}{2}

Hope this helped!

<h3>~AnonymousHelper1807</h3>
4 0
3 years ago
Energy that does not involve the large-scale motion or position of objects in a system is called:
Kryger [21]
I believe the answer is C.
4 0
3 years ago
A comet is in an elliptical orbit around the Sun. Its closest approach to the Sun is a distance of 4.8 1010 m (inside the orbit
creativ13 [48]

Answer:

Explanation:

From the given information:

Distance d_i = 4.8 \times 10^{10} \ m

Speed of the comet V_i = 9.1 \times 10^{4} \ m/s

At distance d_2 = 6 \times 10^{12} \ m

where;

mass of the sun = 1.98 \times 10^{30}

G = 6.67 \times 10^{-11}

To find the speed V_f:

Using the formula:

E_f = E_i + W \\ \\  where; \  \  W = 0  \ \  \text{since work done by surrounding is zero (0)}

E_f = E_i + 0 \\ \\  K_f + U_f = K_i + U_i  \\ \\ = \dfrac{1}{2}mV_f^2 +  \dfrac{-GMm}{d^2} =  \dfrac{1}{2}mV_i^2+ \dfrac{-GMm}{d_i} \\ \\ V_f = \sqrt{V_i^2 + 2 GM \Big [  \dfrac{1}{d_2}- \dfrac{1}{d_i}\Big ]}

V_f = \sqrt{(9.1 \times 10^{4})^2 + 2 (6.67\times 10^{-11}) *(1.98 * 10^{30} ) \Big [  \dfrac{1}{6*10^{12}}- \dfrac{1}{4.8*10^{10}}\Big ]}

\mathbf{V_f =53.125 \times 10^4 \ m/s}

3 0
2 years ago
14. The average speed of a car was 60 m/s by the time it reached the finish line. The car moved in a straight line and traveled
Leni [432]
7.5m. Have a good day :)
4 0
2 years ago
The platform height for Olympic divers is 10 m. A 60 kg diver steps off the platform to begin his dive.
azamat

Answer:

a) Ep = 5886[J]; b) v = 14[m/s]; c)   W = 5886[J]; d) F = 1763.4[N]

Explanation:

a)

The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.

E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]

b)

Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.

E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]

c)

The work is equal to

W = 5886 [J]

d)

We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.

v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]

By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.

m*g - F = m*a

F = m*a - m*g

F = (60*39.2) - (60*9.81)

F = 1763.4 [N]

3 0
3 years ago
Other questions:
  • How are sound energy and light energy similar?
    8·2 answers
  • If an electric wire is allowed to produce a magnetic field no larger than that of the Earth (0.50 x 10-4 T) at a distance of 15
    5·1 answer
  • A 225-kg bumper car (and its occupant) is moving north at 98 cm/s when it hits a 198-kg car (occupant mass included) moving nort
    9·1 answer
  • An object has a relativistic momentum that is 8.30 times greater than its classical momentum. What is its speed?
    7·2 answers
  • Find the acceleration of a car that can go from rest to 50 km/h in 13 s
    12·1 answer
  • Help with 7,8,9 please!!
    14·1 answer
  • Question about the motion of a book, thanks
    10·2 answers
  • A playground slide is inclined 40°. If a boy with a mass of 32 kg slides down for -3meters. How much work is done by gravity on
    15·1 answer
  • Acellus
    8·1 answer
  • A boy pushes a stationary box of mass 20 kg with a force of 50 N.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!