Answer:
Explanation:
From the given information:
Distance 
Speed of the comet 
At distance 
where;
mass of the sun = 

To find the speed
:
Using the formula:

![E_f = E_i + 0 \\ \\ K_f + U_f = K_i + U_i \\ \\ = \dfrac{1}{2}mV_f^2 + \dfrac{-GMm}{d^2} = \dfrac{1}{2}mV_i^2+ \dfrac{-GMm}{d_i} \\ \\ V_f = \sqrt{V_i^2 + 2 GM \Big [ \dfrac{1}{d_2}- \dfrac{1}{d_i}\Big ]}](https://tex.z-dn.net/?f=E_f%20%3D%20E_i%20%2B%200%20%5C%5C%20%5C%5C%20%20K_f%20%2B%20U_f%20%3D%20K_i%20%2B%20U_i%20%20%5C%5C%20%5C%5C%20%3D%20%5Cdfrac%7B1%7D%7B2%7DmV_f%5E2%20%2B%20%20%5Cdfrac%7B-GMm%7D%7Bd%5E2%7D%20%3D%20%20%5Cdfrac%7B1%7D%7B2%7DmV_i%5E2%2B%20%5Cdfrac%7B-GMm%7D%7Bd_i%7D%20%5C%5C%20%5C%5C%20V_f%20%3D%20%5Csqrt%7BV_i%5E2%20%2B%202%20GM%20%5CBig%20%5B%20%20%5Cdfrac%7B1%7D%7Bd_2%7D-%20%5Cdfrac%7B1%7D%7Bd_i%7D%5CBig%20%5D%7D)
![V_f = \sqrt{(9.1 \times 10^{4})^2 + 2 (6.67\times 10^{-11}) *(1.98 * 10^{30} ) \Big [ \dfrac{1}{6*10^{12}}- \dfrac{1}{4.8*10^{10}}\Big ]}](https://tex.z-dn.net/?f=V_f%20%3D%20%5Csqrt%7B%289.1%20%5Ctimes%2010%5E%7B4%7D%29%5E2%20%2B%202%20%286.67%5Ctimes%2010%5E%7B-11%7D%29%20%2A%281.98%20%2A%2010%5E%7B30%7D%20%29%20%5CBig%20%5B%20%20%5Cdfrac%7B1%7D%7B6%2A10%5E%7B12%7D%7D-%20%5Cdfrac%7B1%7D%7B4.8%2A10%5E%7B10%7D%7D%5CBig%20%5D%7D)

Answer:
a) Ep = 5886[J]; b) v = 14[m/s]; c) W = 5886[J]; d) F = 1763.4[N]
Explanation:
a)
The potential energy can be found using the following expression, we will take the ground level as the reference point where the potential energy is equal to zero.
![E_{p} =m*g*h\\where:\\m = mass = 60[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 10 [m]\\E_{p}=60*9.81*10\\E_{p}=5886[J]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cm%20%3D%20mass%20%3D%2060%5Bkg%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%5Bm%2Fs%5E2%5D%5C%5Ch%20%3D%20elevation%20%3D%2010%20%5Bm%5D%5C%5CE_%7Bp%7D%3D60%2A9.81%2A10%5C%5CE_%7Bp%7D%3D5886%5BJ%5D)
b)
Since energy is conserved, that is, potential energy is transformed into kinetic energy, the moment the harpsichord touches water, all potential energy is transformed into kinetic energy.
![E_{p} = E_{k} \\5886 =0.5*m*v^{2} \\v = \sqrt{\frac{5886}{0.5*60} }\\v = 14[m/s]](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3D%20E_%7Bk%7D%20%5C%5C5886%20%3D0.5%2Am%2Av%5E%7B2%7D%20%5C%5Cv%20%3D%20%5Csqrt%7B%5Cfrac%7B5886%7D%7B0.5%2A60%7D%20%7D%5C%5Cv%20%3D%2014%5Bm%2Fs%5D)
c)
The work is equal to
W = 5886 [J]
d)
We need to use the following equation and find the deceleration of the diver at the moment when he stops his velocity is zero.
![v_{f} ^{2}= v_{o} ^{2}-2*a*d\\where:\\d = 2.5[m]\\v_{f}=0\\v_{o} =14[m/s]\\Therefore\\a = \frac{14^{2} }{2*2.5} \\a = 39.2[m/s^2]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%5E%7B2%7D%3D%20v_%7Bo%7D%20%5E%7B2%7D-2%2Aa%2Ad%5C%5Cwhere%3A%5C%5Cd%20%3D%202.5%5Bm%5D%5C%5Cv_%7Bf%7D%3D0%5C%5Cv_%7Bo%7D%20%3D14%5Bm%2Fs%5D%5C%5CTherefore%5C%5Ca%20%3D%20%5Cfrac%7B14%5E%7B2%7D%20%7D%7B2%2A2.5%7D%20%5C%5Ca%20%3D%2039.2%5Bm%2Fs%5E2%5D)
By performing a sum of forces equal to the product of mass by acceleration (newton's second law), we can find the force that acts to reduce the speed of the diver to zero.
m*g - F = m*a
F = m*a - m*g
F = (60*39.2) - (60*9.81)
F = 1763.4 [N]