Efficiency η of a Carnot engine is defined to be:
<span>η = 1 - Tc / Th = (Th - Tc) / Th </span>
<span>where </span>
<span>Tc is the absolute temperature of the cold reservoir, and </span>
<span>Th is the absolute temperature of the hot reservoir. </span>
<span>In this case, given is η=22% and Th - Tc = 75K </span>
<span>Notice that although temperature difference is given in °C it has same numerical value in Kelvins because magnitude of the degree Celsius is exactly equal to that of the Kelvin (the difference between two scales is only in their starting points). </span>
<span>Th = (Th - Tc) / η </span>
<span>Th = 75 / 0.22 = 341 K (rounded to closest number) </span>
<span>Tc = Th - 75 = 266 K </span>
<span>Lower temperature is Tc = 266 K </span>
<span>Higher temperature is Th = 341 K</span>
Answer:height above ground at which projectile have velocity
0.5v is (0.0375v^2)
Explanation:
Using Vf = Vi - gt
Where Vf is final velocity
Vi is initial velocity
g is the acceleration due to gravity
t is the time taken
So, 0.5v = v - gt
t = 0.05v
Therefore height h = vt - 0.5gt^2
Subtitute t
h = 0.05v^2 - 0.0125v^2
h = 0.0375v^2
Answer:
Explanation:
Equivalent resistance is 1 / ((1/1) + (1/2) + (1/2) + (1/3)) = 3/7 Ω
I = V/R = 4(7/3) = 28/3 = 9.3 A
I think it’s the third one idk tho
Answer:
Explanation:
mass of baseball, m = 0.148 kg
initial velocity, u = 15.5 m/s
final velocity, v = 10.1 m/s
Impulse is defined as the change in momentum of the body.
Impulse = change in momentum
I = m (v - u)
I = 0.148 (10.1 - 15.5)
I = - 0.8 Ns