1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
trapecia [35]
3 years ago
12

What is one way that continental rifts are similar to mid-ocean ridges and what is one that they are different?

Physics
2 answers:
just olya [345]3 years ago
7 0

Answer: Both mid-ocean ridges and continental rifts form where two plates are moving apart from each other. However, mid ocean ridges occur in the ocean, while continental rifts occur on land.

Explanation:

This is word for word on the answer so i would change it up a little

adell [148]3 years ago
3 0

Explanation:

Continental rifts and mid-ocean ridges are both features of a divergent plate margin.

In both cases plates are moving away from one another. Therefore they are creating new land masses.

  • A continental drift like the east African rift valley is where a continent begins to pull apart or diverges.
  • A mid-ocean ridge is divergent margin in the ocean.

They are different in that, continental rift occurs within the continental plate that are on land.

But:

 Mid-ocean ridges are in the oceanic crust in the ocean . They form the largest physiographic structure on the earth surface called the mid-ocean ridge.

learn more:

Descending lithosphere brainly.com/question/9582362

#learnwithBrainly

You might be interested in
A 1,200 kg dragster, starting from rest, reaches a maximum velocity of 140m/s in 5 seconds. At the 5 second mark, the dragster d
SSSSS [86.1K]

Answer:

Drag or air resistance

Explanation:

The force of friction caused by a moving fluid is called drag.  When that fluid is air, it's also known as air resistance.

8 0
3 years ago
A 4-kg toy car with a speed of 5 m/s collides head-on with a stationary 1-kg car. After the collision, the cars are locked toget
mihalych1998 [28]

Kinetic energy lost in collision is 10 J.

<u>Explanation:</u>

Given,

Mass, m_{1} = 4 kg

Speed, v_{1} = 5 m/s

m_{2} = 1 kg

v_{2} = 0

Speed after collision = 4 m/s

Kinetic energy lost, K×E = ?

During collision, momentum is conserved.

Before collision, the kinetic energy is

\frac{1}{2} m1 (v1)^2 + \frac{1}{2} m2(v2)^2

By plugging in the values we get,

KE = \frac{1}{2} * 4 * (5)^2 + \frac{1}{2} * 1 * (0)^2\\\\KE = \frac{1}{2} * 4 * 25 + 0\\\\

K×E = 50 J

Therefore, kinetic energy before collision is 50 J

Kinetic energy after collision:

KE = \frac{1}{2} (4 + 1) * (4)^2 + KE(lost)

KE = 40J + KE(lost)

Since,

Initial Kinetic energy = Final kinetic energy

50 J = 40 J + K×E(lost)

K×E(lost) = 50 J - 40 J

K×E(lost) = 10 J

Therefore, kinetic energy lost in collision is 10 J.

4 0
3 years ago
Two objects are dropped from rest from the same height. Object A falls through a distance during a time t, and object B falls th
UNO [17]

Answer:

Distance covered by B is 4 times distance covered by A

Explanation:

For an object in free fall starting from rest, the distance covered by the object in a time t is

s=\frac{1}{2}gt^2

where

s is the distance covered

g is the acceleration due to gravity

t is the time elapsed

In this problem:

- Object A falls through a distance s_A during a time t, so the distance covered by object A is

s_A=\frac{1}{2}gt^2

- Object B falls through a distance s_B during a time 2t, so the distance covered by object B is

s_B=\frac{1}{2}g(2t)^2 = 4(\frac{1}{2}gt^2)=4s_A

So, the distance covered by object B is 4 times the distance covered by object A.

5 0
3 years ago
The type of energy that depends on position is called
attashe74 [19]
The type of energy that depends on position is called
kinetic energy
5 0
3 years ago
a ball rolls horizontally of the edge of the cliff at 4 m/s, if the ball lands at a distance of 30 m from the base of the vertic
algol13

Answer:

Approximately 281.25\; \rm m. (Assuming that the drag on this ball is negligible, and that g = 10\; \rm m \cdot s^{-2}.)

Explanation:

Assume that the drag (air friction) on this ball is negligible. Motion of this ball during the descent:

  • Horizontal: no acceleration, velocity is constant (at v(\text{horizontal}) is constant throughout the descent.)
  • Vertical: constant downward acceleration at g = 10\; \rm m \cdot s^{-2}, starting at 0\; \rm m \cdot s^{-1}.

The horizontal velocity of this ball is constant during the descent. The horizontal distance that the ball has travelled during the descent is also given: x(\text{horizontal}) = 30\; \rm m. Combine these two quantities to find the duration of this descent:

\begin{aligned}t &= \frac{x(\text{horizontal})}{v(\text{horizontal})} \\ &= \frac{30\; \rm m}{4\; \rm m \cdot s^{-1}} = 7.5\; \rm s\end{aligned}.

In other words, the ball in this question start at a vertical velocity of u = 0\; \rm m \cdot s^{-1}, accelerated downwards at g = 10\; \rm m \cdot s^{-2}, and reached the ground after t = 7.5\; \rm s.

Apply the SUVAT equation \displaystyle x(\text{vertical}) = -\frac{1}{2}\, g \cdot t^{2} + v_0\cdot t to find the vertical displacement of this ball.

\begin{aligned}& x(\text{vertical}) \\[0.5em] &= -\frac{1}{2}\, g \cdot t^{2} + v_0\cdot t\\[0.5em] &= - \frac{1}{2} \times 10\; \rm m \cdot s^{-2} \times (7.5\; \rm s)^{2} \\ & \quad \quad + 0\; \rm m \cdot s^{-1} \times 7.5\; s \\[0.5em] &= -281.25\; \rm m\end{aligned}.

In other words, the ball is 281.25\; \rm m below where it was before the descent (hence the negative sign in front of the number.) The height of this cliff would be 281.25\; \rm m\!.

5 0
3 years ago
Other questions:
  • Find the time it takes for each object to accelerate from 0m/s to 40 m/s when pushed with 100N of force
    12·1 answer
  • Technician A says that one of advantages of a clutch brake is its ability to bring a vehicle to a halt at low speeds. Technician
    12·1 answer
  • What is the distance, in meters, between adjacent fringes produced by a diffraction grating having 125 lines per centimeter
    13·1 answer
  • 3. The car's mass is 400 kg. It moves at a velocity of 20 m/s. Calculate the car's momentum. *
    10·1 answer
  • The bottom of the hockey stick is called a?
    7·1 answer
  • Answer all of these questions and you will get the brainlist
    14·1 answer
  • SOMEBODY PLEEASEEE HELP A STRUGGLING HIGHSCHOOLERRRR +(
    10·1 answer
  • The
    10·1 answer
  • What indicates that a chemical reaction has taken place? Explain why
    12·1 answer
  • Two birds sit at the top of two different trees 17.8 feet away from one another. the distance between the first bird and a birdw
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!