Karl Schwarzschild devised the first general relativity model that would adequately describe a black hole in 1916.
What is Black Hole?
A black hole is an area of spacetime with such intense gravitational pull that nothing can escape from it, not even light or other electromagnetic waves. According to general relativity theory, a compact enough mass can bend spacetime into a black hole. The event horizon is the line beyond which there is no escape.
Black holes were once thought to be a mathematical curiosity, but theoretical research in the 1960s revealed that they were actually a general prediction of general relativity.
To know more about Black Hole refer:
brainly.com/question/7866362
#SPJ4
Solution :
Given data is :
Density of the milk in the tank, 
Length of the tank, x = 9 m
Height of the tank, z = 3 m
Acceleration of the tank, 
Therefore, the pressure difference between the two points is given by :

Since the tank is completely filled with milk, the vertical acceleration is 

Therefore substituting, we get




Therefore the maximum pressure difference in the tank is Δp = 47.87 kPa and is located at the bottom of the tank.
Answer:
Explanation:
height of Ellipse
i.e.
Width of Ellipse 
i.e.
Equation of a vertical Ellipse is
at
It will be 3 wavelengths because 1 cycle = 1 wavelength.
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is