The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4
Answer:
2ms-¹ means that the body under consideration moves 2m in a second, and may be it will continue to move 2m in every 1 second, if there's no external unbalanced force acting on that body (those forces do include frictional forces). mark its brainlist plz. Kaneppeleqw and 6 more users found this answer helpful. Thanks 3.
Work, is the speed at which energy transfers.
Energy, is the capacity to do work.
Power, is the rate at which work is done.
Answer: 55 ohms
Explanation:
Given that,
Voltage of heater (v) = 110-volt
Current drawn by heater (I) = 2.0 amperes
resistance of the heater (r) = ?
Since voltage, current and resistance are involved, apply the formula for ohms law.
Voltage = current x resistance
i.e v = ir
where r = v / i
r = 110 volts / 2.0 A
r = 55 ohms
Thus, the resistance of the heater is 55 ohms
A girl leans against a wall and the wall pushes on the girl.
A baseball hits a glove and the glove pushes on the ball.
A cat rubs up against a tree and the tree pushes against the cat