Answer:
No, it is not sufficient
Please find the workings below
Explanation:
Using E = hf
Where;
E = energy of a photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency
However, λ = v/f
f = v/λ
Where; λ = wavelength of light = 325nm = 325 × 10^-9m
v = speed of light (3 × 10^8 m/s)
Hence, E = hv/λ
E = 6.626 × 10^-34 × 3 × 10^8 ÷ 325 × 10^-9
E = 19.878 × 10^-26 ÷ 325 × 10^-9
E = 19.878/325 × 10^ (-26+9)
E = 0.061 × 10^-17
E = 6.1 × 10^-19J
Next, we work out the energy required to dissociate 1 mole of N=N. Since the bond energy is 418 kJ/mol.
E = 418 × 10³ ÷ 6.022 × 10^23
E = 69.412 × 10^(3-23)
E = 69.412 × 10^-20
E = 6.9412 × 10^-19J
6.9412 × 10^-19J is required to break one mole of N=N bond.
Based on the workings above, the photon, which has an energy of 6.1 × 10^-19J is not sufficient to break a N=N bond that has an energy of 6.9412 × 10^-19J
Since 1mL=1cm^3 the wood would sink due to it being more dense. I.e. 0.95>0.88
The pH of pure water is neutral because the concentration of hydronium ions equals that of hydroxide ions.
Answer: Option A
<u>Explanation:</u>
Water is one of the most important constituents of living being. It is said that there is no life without water. So that water need to neutral in nature to save life. Pure water is composed of hydronium
and hydroxide
ions. It is known that hydronium ions are acidic in nature with concentration of
.
Similarly, the hydroxide ions which are basic in nature will be in same concentration as that of hydronium ions. So, as the concentration of basic and acidic elements are equal with the same strength of pH, the combination of these ions lead to formation of pure water with the pH being neutral.
Answer: Another useful feature of the periodic table is that most tables provide all the information you need to balance chemical reactions at a glance. The table tells each element's atomic number and usually its atomic weight. The typical charge of an element is indicated by its group.
Explanation:
Is bubble chamber one of your choices? Bubble chamber sounds like a good fit for the question.