Answer:
Since the computed value of t= 0.833 does not fall in the critical region we therefore do not reject H0 and may conclude that population mean is greater than 160. Or the sample comes from population with mean of 165.
Step-by-step explanation:
- State the null and alternative hypothesis as
H0: μ= 160 against the claim Ha :μ ≠160
Sample mean = x`= 165
Sample standard deviation= Sd= 12
2. The test statistic to use is
t= x`-μ/sd/√n
which if H0 is true , has t distribution with n-1 = 36-1= 35 degrees of freedom
3. The critical region is t< t (0.025(35)= 2.0306
t= x`-μ/sd/√n
4. t = (165-160)/[12/√(36)] = 5/[6] = 0.833
5. Since the computed value of t= 0.833 does not fall in the critical region we therefore do not reject H0 and may conclude that population mean is greater than 160. Or the sample comes from population with mean of 165.
Now
6. The p-value is 0 .410326 for t= 0.8333 with 35 degrees of freedom.
y=2x+3 (the 3 can be changed)
-8x - 46 = -6x - 8
-8x + 6x = -8 + 46
-2x = 38
x = -19
The equation:
-8x - 46 = -6x - 8
The solution:
x = -19
Green or purple = 10
prob(green or purple) = 10/30 = 1/3
Answer:
<em>Jane traveled 8 miles farther then her trainer</em>
Step-by-step explanation:
<u>The Pythagora's Theorem</u>
In any right triangle, the square of the measure of the hypotenuse is the sum of the squares of the legs. This can be expressed with the formula:

Where
c = Hypotenuse or largest side
a,b = Legs or shorter sides
Jane's path from the Health Club to the end of her route describes two sides of a right triangle of lengths a=16 miles and b=12 miles.
Her total distance traveled is 16 + 12 = 28 miles
Her trainer goes directly from the Health Club to meet her through the hypotenuse of the triangle formed in the path.
We can calculate the length of his route as:


c = 20 miles
The difference between their traveled lengths is 28 - 20 = 8 miles
Jane traveled 8 miles farther then her trainer