Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer:
C
Explanation:
Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces
I hope this helps a little bit
Explanation:
There are many ways to achieve a healthier lifestyle and increase fitness. Healthy eating and constant exercise are essential for maintaining good physical and mental health. Through effective nutrition the human body is able to function better, there is an increase in disposition, improvement in immunity, improvement in blood rates, etc. Physical exercise, on the other hand, assists in strengthening muscles, controlling blood pressure, preventing cardiovascular disease, greater satisfaction, less stress, etc.
Some simple examples that can assist in improving health and fitness are:
- Reduction of processed foods, sugars and soft drinks.
- Increased fiber intake
- Daily walks of at least 30 minutes
- Increased water consumption
- Increased consumption of fruits and vegetables
- Incorporate meditation and yoga practices
Answer:

Explanation:
The net force exerted on the mass is the sum of tension force and the external force of gravity.

is the tension force.
is the force of gravity.

where
is the rope's radius from the fixed point.
From the net force equation above:

Hence the tension force is 6.046N
Hi there! :)

Use the following kinematic equation to solve for the final velocity:

In this instance, the runner started from rest, so the initial velocity is 0 m/s. We can rewrite the equation as:

Plug in the given acceleration and time:
