Answer:
64°
Explanation:
The triangle is an isosceles triangles (both legs are equal to the radius of the circle), so that means the base angles are the same.
Angles of a triangle add up to 180°, so:
128 + 2x = 180
2x = 52
x = 26
∠1 is complementary to the base angle, so:
∠1 = 90 − 26
∠1 = 64
Answer:
force and leverage distance
Explanation:
the formula for torque if = force x distance
(the distance above is the leverage distance on the crow bar)
therefore if there is an increase in either the torque or the leverage distance, or both, the torque exerted by the crow bar also increases.
for example
- lets assume a force of 5 n is applied on the crow bar with a leverage distance of 2 m.
the torque = 5 x 2 = 10 N.m
- but if the force was increased to 7 N
torque = 7 x 2 = 12 N.m
from the illustration above, we can see that the torque increased with an increase in force. There would also be an increase in torque if the distance were to be increased.
Explanation:
D. I hope i helped it should be right but if it isn't my bad
Answer:
about 19.6° and 73.2°
Explanation:
The equation for ballistic motion in Cartesian coordinates for some launch angle α can be written ...
y = -4.9(x/s·sec(α))² +x·tan(α)
where s is the launch speed in meters per second.
We want y=2.44 for x=50, so this resolves to a quadratic equation in tan(α):
-13.6111·tan(α)² +50·tan(α) -16.0511 = 0
This has solutions ...
tan(α) = 0.355408 or 3.31806
The corresponding angles are ...
α = 19.5656° or 73.2282°
The elevation angle must lie between 19.6° and 73.2° for the ball to score a goal.
_____
I find it convenient to use a graphing calculator to find solutions for problems of this sort. In the attachment, we have used x as the angle in degrees, and written the function so that x-intercepts are the solutions.
The electric field in the conductor is 1. 96 × 10^-5 V/m
<h3>How to determine the drift velocity</h3>
The formula for drift velocity is expressed as;
Drift velocity = = μE
Where;
- μ is the Electron mobility of the material, copper wire = 40Vs
- E is the electric field
- Drift velocity = 7.84×10⁻⁴ m/s
Substitute the values
Electric field, E = Drift velocity/ electron mobility
E = 7.84×10⁻⁴/ 40
E = 1. 96 × 10^-5 V/m
Thus, the electric field in the conductor is 1. 96 × 10^-5 V/m
Learn more about drift velocity here:
brainly.com/question/25700682
#SPJ4