Answer:
1.843 x 10^-5 C
Explanation:
<u><em>Givens:
</em></u>
It is given that the air starts ionizing when the electric field in the air exceeds a magnitude of 3 x 10^6 N/C, which means that the max electric field can stand without forming a spark is 3 x 10^6 N/C.
Also it is given that the radius of the disk is 50 cm, it is required to find out the max amount of charge that the disk can hold without forming spark, which means the charge that would produce the max magnitude of the electric field that air can stand without forming spark, and since we know that the electric field in between 2 disk "Capacitor" is given by the following equation
E = (Q/A)/∈o (1)
Where,
Q: total charge on the disk.
A: the area of the disk.
<u><em>Calculations: </em></u>
We want to find the quantity of charge on the disk that would produce an electric field of 3 x 10^6 N/C, knowing the radius of the disk we can find the cross-section of the disk, thus substituting in equation (1) we find the maximum quantity of charge the disk can hold
Q = EA∈o
= (3 x 10^6) x (π*0.50) x (8.85 x 10^-12)
= 1.843 x 10^-5 C
note:
calculations maybe wrong but method is correct
Hello Micu212006
Question: <span> Both the large loose rocks and the small loose rocks used to be part of earth's solid rock layer
</span><span>
Answer: True
Hope This Helps!
-Chris </span>
Answer:
It has been learned in this lesson that the area bounded by the line and the axes of a velocity-time graph is equal to the displacement of an object during that particular time period. ... Once calculated, this area represents the displacement of the object.
Explanation:
ONE CAN perform this by doing an ideal experiment
by creating an isothermal system
its like you supply heat to a body and that body is present at very low temperature the amount of heat you supply is equal to the amount of heat lost by that body due to difference in the temperature of the body and the surrounding. heating curve will be constant as there is no change in the internal energy of the system ..