Answer:
= +3,394 103 m / s
Explanation:
We will solve this problem with the concept of the moment. Let's start by defining the system that is formed by the complete rocket before and after the explosions, bone with the two stages, for this system the moment is conserved.
The data they give is the mass of the first stage m1 = 2100 kg, the mass of the second stage m2 = 1160 kg and its final velocity v2f = +5940 m / s and the speed of the rocket before the explosion vo = +4300 m / s
The moment before the explosion
p₀ = (m₁ + m₂) v₀
After the explosion
pf = m₁
+ m₂ ![v_{2f}](https://tex.z-dn.net/?f=v_%7B2f%7D)
p₀ = [texpv_{f}[/tex]
(m₁ + m₂) v₀ = m₁
+ m₂
Let's calculate the final speed (v1f) of the first stage
= ((m₁ + m₂) v₀ - m₂
) / m₁
= ((2100 +1160) 4300 - 1160 5940) / 2100
= (14,018 10 6 - 6,890 106) / 2100
= 7,128 106/2100
= +3,394 103 m / s
come the same direction of the final stage, but more slowly
Surface air pressure is a consequence of the weight of the air acting on its surface. For example, if you are standing on Mars, the pressure around you is what you call the surface air pressure. Thus, that surface air pressure must be 0.007 atm.
A magnetic domain is a group of atoms aligns with magnetic poles. Domains are usually <span>light and dark stripes visible within each grain.</span>
Answer:
Explanation:
D = 8.27 m ⇒ R = D / 2 = 8.27 m / 2 = 4.135 m
ω = 0.66 rev/sec = (0.66 rev/sec)*(2π rad/1 rev) = 4.1469 rad/s
We can apply the equation
Ff = W ⇒ μ*N = m*g <em>(I)</em>
then we have
N = Fc = m*ac = m*(ω²*R)
Returning to the equation <em>I</em>
<em />
μ*N = m*g ⇒ μ*m*ω²*R = m*g ⇒ μ = g / (ω²*R)
Finally
μ = (9.81 m/s²) / ((4.1469 rad/s)²*4.135 m) = 0.1379
Answer:
1.contact force
2. Non contact
Explanation:
1. Because bodies are in contact
2.Bodies are not in contact.