Answer:
The direction a wave propagates is perpendicular to the direction it oscillates for transverse waves. A wave does not move mass in the direction of propagation; it transfers energy.
Explanation:
So E = 2x10^-3W/m^2*(π*(3.0x10^-3m)^2)*1min*60s... = 3.4x10^-6J
Answer:
<h3>The answer is 0.115 mL</h3>
Explanation:
The volume of a substance when given the density and mass can be found by using the formula

From the question
mass = 10 g
density = 87 g/ml
We have

We have the final answer as
<h3>0.115 mL</h3>
Hope this helps you
Answer:
Option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Explanation:
Normally, ignoring air resistance, for projectile motion, the range (horizontal distance teavelled) of the motion is given as
R = (u² sin 2θ)/g
where
u = initial velocity of the projectile = 20 m/s
θ = angle above the horizontal at which the projectile was launched = 30°
g = acceleration due to gravity = 9.8 m/s²
R = (30² sin 60°) ÷ 9.8
R = 78.53 m
So, Normally, the stone should travel a horizontal distance of 78.53 m. So, travelling a horizontal distance of 32 m (less than half of what the range should be without air resistance) means that, the motion of the stone was impeded, hence, option E is correct.
There must be a horizontal wind opposite the direction of the stone's motion, because ignoring air resistance when calculating the horizontal range would yield a value greater than 32 m.
Hope this Helps!!!
Answer:
It will take 4 sec rock to comes its original point
Explanation:
It is given that the rock comes to its original point
So displacement S = 0 m
Initial velocity u = 19.6 m/sec
Acceleration due to gravity 
According to second equation of motion 


t = 4 sec