Answer:
Latent heatnof fusion = 417.5 J
Explanation:
Specific latent heat of fusion of water is 334kJ.kg-1.
The heat required to melt water when it's ice I called latent heat because there is no temperature change, the only change observed is change in physical structure.
The amount of heat required to change 1 kg of solid to its liquid state (at its melting point) at atmospheric pressure is called Latent heat of Fusion.
Latent heat = ML
Latent heat= 1.25 kg * 334kJ.kg-1
Latent heat = 1.25*334 *(J/kg)*kg
Latent heat = 417.5 J
(6) Wagon B is at rest so it has no momentum at the start. If <em>v</em> is the velocity of the wagons locked together, then
(140 kg) (15 m/s) = (140 kg + 200 kg) <em>v</em>
==> <em>v</em> ≈ 6.2 m/s
(7) False. If you double the time it takes to perform the same amount of work, then you <u>halve</u> the power output:
<em>E</em> <em>/</em> (2<em>t </em>) = 1/2 × <em>E/t</em> = 1/2 <em>P</em>
<em />
Answer:
a) 6.9*10^14 Hz
b) 9*10^-12 T
Explanation:
From the question, we know that
435 nm is given as the wavelength of the wave, at the same time, we also know that the amplitude of the electric field, E(max) has been given to be 2.7*10^-3 V/m
a)
To find the frequency of the wave, we would be applying this formula
c = fλ, where c = speed of light
f = c/λ
f = 3*10^8 / 435*10^-9
f = 6.90*10^14 Hz
b) again, to find the amplitude of the magnetic field, we would use this relation
E(max) = B(max) * c, magnetic field amplitude, B(max) =
B(max) = E(max)/c
B(max) = 2.7*10^-3 / 3*10^8
B(max) = 9*10^-12 T
c) and lastly,
1T = 1 (V.s/m^2)
To solve this problem it is necessary to apply the fluid mechanics equations related to continuity, for which the proportion of the input flow is equal to the output flow, in other words:

We know that the flow rate is equivalent to the velocity of the fluid in its area, that is,

Where
V = Velocity
A = Cross-sectional Area
Our values are given as



Since there is continuity we have now that,






Therefore the speed of the water's house supply line is 0.347m/s