Answer:
I'm pretty sure its B and C
Explanation:
B bc the weight is gravitational pull x mass so when the object has same mass the weight is smaller on moon
C bc mass is the same - you can't change it
Correct answer choice is :
B) Upwarped
Explanation:
An upwarped mountain is a mountain consisting of a large area of the Earth's coat that has led smoothly upward without much visible deformation and normally including sedimentary, igneous, and metamorphic rocks. Sedimentary rocks are set down in layers called beds or layers. A bed is described as a layer of rock that has a similar lithology and character. Beds form by the removal of layers of sand on top of each other.
m = mass of the car moving in horizontal circle = 1750 kg
v = Constant speed of the car moving in the horizontal circle = 15 m/s
r = radius of the horizontal circular track traced by the car = 45.0 m
F = magnitude of the centripetal force acting on the car
To move in a circle . centripetal force is required which is given as
F = m v²/r
inserting the above values in the formula
F = (1750) (15)²/(45)
F = (1750) (225)/(45)
F = 1750 x 5
F = 8750 N
Answer:
The average velocity has magnitude = 10 km/h , direction: east
Explanation:
In order to find the average velocity of the car we need to know the final and initial positions, and the time that took to get from one to the other.
Notice that since its movement was 60 km straight east and then from there 40 km straight west, the car is positioned at 20 km to the east of its initial departure point. therefore the vector change in position is a vector 20 km in magnitude, and direction towards the east.
Since it took the car a total of 1.33 hours plus 0.67 hours to reach its final position, the total time elapsed is: 1.33 + 0.67 hours = 2 hours.
Then,the velocity vector has magnitude; 20 km / 2 hours = 10 km/hour
As we mentioned above. the direction of the velocity vector is east.