Volume of the hexagonal prism = 1732.7772 ft³
Solution:
Height of the prism (H) = 15.4 ft
Side of the hexagon base (b) = 6.58 ft
Height from center to the side length (h) = 5.7 ft.
Let us first find the area of the base.
Area of the base (B) = 

Area of the base (B) = 112.518 ft²
To find the volume of the hexagonal prism:
Volume of the hexagonal prism = Area of the base × Height
= 112.518 × 15.4
= 1732.7772 ft³
The volume of the hexagonal prism is about 1732.7772 ft³.
Answer:
14
Divide
12 and 1 over 412
1
4
÷ 7 over 8
7
8
= 392 over 28
392
28
Step 1 of 2: Divide, sub-step a: Convert mixed number to improper fraction.
Convert mixed number to improper fraction
12 and 1 over 412
1
4
= ( 12 × 4 ) over 4
12 × 4
4
+ 1 over 4
1
4
= ( 48 + 1 ) over 4
48 + 1
4
= 49 over 4
49
4
Step 1 of 2: Divide, sub-step b: Divide.
Divide
49 over 4
49
4
÷ 7 over 8
7
8
= 49 over 4
49
4
× 8 over 7
8
7
= ( 49 × 8 ) over ( 4 × 7 )
49 × 8
4 × 7
= 392 over 28
392
28
To divide fractions, invert the second one (turn it upside-down), then multiply the numerators and denominators.Divide
12 and 1 over 412
1
4
÷ 7 over 8
7
8
= 392 over 28
392
28
Step 1 of 2: Divide, sub-step a: Convert mixed number to improper fraction.
Convert mixed number to improper fraction
12 and 1 over 412
1
4
= ( 12 × 4 ) over 4
12 × 4
4
+ 1 over 4
1
4
= ( 48 + 1 ) over 4
48 + 1
4
= 49 over 4
49
4
Step 1 of 2: Divide, sub-step b: Divide.
Divide
49 over 4
49
4
÷ 7 over 8
7
8
= 49 over 4
49
4
× 8 over 7
8
7
= ( 49 × 8 ) over ( 4 × 7 )
49 × 8
4 × 7
= 392 over 28
392
28
To divide fractions, invert the second one (turn it upside-down), then multiply the numerators and denominators.
First take the fractions and find their common denominator:

x 4 =

Now you can add the fractions:

Now add your whole numbers and the fraction:
1+1= 2 >> 2+

= 2

yards
Now subract 2

from 5:
5-2

=
2
yards
<u>Part 1)</u> A 20° sector in a circle has an area of 21.5π yd².
What is the area of the circle?
we know that
the area of a circle represent a sector of
degrees
so by proportion
therefore
<u>the answer part 1) is</u>
The area of the circle is 
<u>Part 2)</u> What is the area of a sector with a central angle of 3π/5 radians and a diameter of 21.2 cm?
we know that
the area of the circle is equal to

where
r is the radius of the circle
in this problem we have

<u>Find the area of the circle</u>



<u>Find the area of the sector</u>
we know that the area of the circle represent a sector of
radians
by proportion
therefore
<u>the answer part 2) is</u>
the area of the sector is

Smaller number, if it's 8 x 1/8 you will get 1.