Answer:
The reactances vary with frequency, with large XL at high frequencies and large Xc at low frequencies, as we have seen in three previous examples. At some intermediate frequency fo, the reactances will be the same and will cancel, giving Z = R; this is a minimum value for impedance and a maximum value for Irms results. We can get an expression for fo by taking
XL=Xc
Substituting the definitions of XL and XC,
2
foL=1/2
foC
Solving this expression for fo yields
fo=1/2

where fo is the resonant frequency of an RLC series circuit. This is also the natural frequency at which the circuit would oscillate if it were not driven by the voltage source. In fo, the effects of the inductor and capacitor are canceled, so that Z = R and Irms is a maximum.
Explanation:
Resonance in AC circuits is analogous to mechanical resonance, where resonance is defined as a forced oscillation, in this case, forced by the voltage source, at the natural frequency of the system. The receiver on a radio is an RLC circuit that oscillates best at its {f} 0. A variable capacitor is often used to adjust fo to receive a desired frequency and reject others is a graph of current versus frequency, illustrating a resonant peak at Irms at fo. The two arcs are for two dissimilar circuits, which vary only in the amount of resistance in them. The peak is lower and wider for the highest resistance circuit. Thus, the circuit of higher resistance does not resonate as strongly and would not be as selective in a radio receiver, for example.
A current versus frequency graph for two RLC series circuits that differ only in the amount of resistance. Both have resonance at fo, but for the highest resistance it is lower and wider. The conductive AC voltage source has a fixed amplitude Vo.
Answer:
The information he needs next is;
B. Volume of paint needed per unit area
Explanation:
The operation Andy wants to perform = To apply paint on the walls of the house
The information Andy knows = The area of all walls in the house
The total volume of paint needed = The total area of the walls × The volume of paint needed for each unit area
Therefore, the information required is the volume of paint needed per unit area.
Answer:
B. 180 million joules
Explanation:
Apply the formula for heat transfer given as;
Q=m*c*Δt where
Q = electrical energy consumed by the heater in joules
m= mass of air in the chamber in kg
c= specific heat of air in joules per kg degrees Celsius
Δt= change in temperatures in degrees Celsius
Given in the question;
m= 1200 kg
c= 1000 J/°C /kg
Δt = 180°-30°= 150° C
Substitute values in the equation to get Q as;
Q=m*c*Δt
Q= 1200 * 1000* 150
Q= 180000000 joules
Q = 180 million joules
<u>The correct answer option is B : 180 million joules.</u>
Answer: abundant energy sources
Explanation:
A power generating station which is sometimes referred to as the power plant is simply an industrial facility that is used for the generation of power.
Large, centralized power-generating stations are often located near abundant energy sources. It should be noted that most power stations burn fossil fuels like oil, coal, natural gas, in order to be able to generate power and hence, they have to be located where there's abundance of the energy sources.
Answer:
i can Help you but iam using my phone so typing is really hectic. reach me via app on +254743503332