1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qwelly [4]
2 years ago
12

Find the degree and determine whether the polynomial is a monomial binomial, or a trinomial. 8y

Mathematics
1 answer:
Contact [7]2 years ago
5 0

The degree of the polynomial, 8y give. and the it is a monomial.

<h3>What is a Polynomial?</h3>

A polynomial is an algebraic expression which may be of varying degrees or number of terms.

According to the question;

  • The expression given is; 8y.

Since, the highest degree of the variable, y is one; we can conclude that the polynomial is of degree one.

Additionally, since there's only one term in the polynomial, we can conclude it is a monomial.

Read more on polynomials;

brainly.com/question/10937045

You might be interested in
Need help on these 2
Ostrovityanka [42]

Answer:5. the average is 2 million for football which is not much compared to basketball and football because the average is 8.2 million for basketball and 4.17 million for baseball

Step-by-step explanation:

5 0
2 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
Please help me ASAP
stellarik [79]

Answer:

<em>The Graph is shown below</em>

Step-by-step explanation:

<u>The Graph of a Function</u>

Given the function:

\displaystyle y=g(x)=-\frac{3}{2}(x-2)^2

It's required to plot the graph of g(x). Let's give x some values:

x={-2,0,2,4,6}

And calculate the values of y:

\displaystyle y=g(-2)=-\frac{3}{2}(-2-2)^2=-\frac{3}{2}(-4)^2==-\frac{3}{2}*16=-24

Point (-2,-24)

\displaystyle y=g(0)=-\frac{3}{2}(0-2)^2=-\frac{3}{2}(-2)^2=-\frac{3}{2}*4=-6

Point (0,-6)

\displaystyle y=g(2)=-\frac{3}{2}(2-2)^2=-\frac{3}{2}(0)^2=0

Point (2,0)

\displaystyle y=g(4)=-\frac{3}{2}(4-2)^2=-\frac{3}{2}(2)^2=-\frac{3}{2}*4=-6

Point (4,-6)

\displaystyle y=g(6)=-\frac{3}{2}(6-2)^2=-\frac{3}{2}(4)^2=-\frac{3}{2}*16=-24

Point (6,-24)

The graph is shown in the image below

8 0
2 years ago
Pleasee help mee<br><br>12sin(x)-5cos(x)=6,5​
abruzzese [7]

We turn -5,12 into polar coordinates.  It's a Pythagorean Triple so

r = 13   Ф=arctan(-12/5) + 180°   ( in the second quadrant )

so -5 = 13 cos Ф, 12 = 13 sin Ф

12 sin x - 5 cos x = 6.5

13 sinФ sin x + 13 cos Ф cos x = 6.5  

13 cos(x - Ф) = 6.5

cos(x - Ф) = 1/2

cos(x - Ф) = cos 60°

x - Ф = ± 60° + 360° k     integer k

x = Ф ± 60° + 360° k  

x = 180° + arctan(-12/5) ± 60° + 360° k  

That's the exact answer;

x ≈  180° - 67.38° ± 60° + 360° k  

x ≈  122.62° ± 60° + 360° k  

x ≈  { 62.62°, 182.62°} + 360° k,  integer k

3 0
2 years ago
The eatery restaurant has 200 tables. On a recent evening, there were reservations for 1/10 of the tables. How many tables were
joja [24]
<span>There were 20 tables reserved. 1/10 is equivalent to 10%. To find 10%, divide the total number of tables by 10. 200/10 = 20.</span>
8 0
3 years ago
Other questions:
  • What two theories can be used to predict molecular geometry?
    9·1 answer
  • 1/3 - 3 (2/7x - 4) Which of the expressions are equivalent to the expression above? A) 1/3 - (3)(2/7x)-(3)(4) B) 1/3 - 6/7x + 12
    14·1 answer
  • A new car sells for $30,000. The value of the car decreases by 16% annually. After how many years will the car be worth less tha
    6·1 answer
  • Identify the value for the variable. What is the value of x in this simplified expression? 7-9 · 7-3 = 7x
    13·2 answers
  • Solve this question for me​
    14·1 answer
  • keisha drove 225 miles using 10 gallons of gas. at this rate, how many gallons of gas would she need to drive 441 miles
    12·1 answer
  • Write an equation for :<br> one third of a number plus 5 is 8
    13·1 answer
  • The legs of a right triangle are x + 1 and x + 4. What is the area of the triangle?
    5·1 answer
  • Write an equation that describes the function. (10,14) (20,24) (30,34) (40,44)
    10·1 answer
  • HELP ‼️
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!