You will use the Pythagorean Theorem to solve it.
c^2 = a^2 + b^2
c^2 = (1.5)^2 + (2)^2
c^2 = 6.25
c = square root of 6.25
c = 2.5
I hope this helps!
Answer:
The sound intensity of train is 1000 times greater than that of the library.
Explanation:
We have expression for sound intensity level,

A train whistle has a sound intensity level of 70 dB
We have

A library has a sound intensity level of about 40 dB
We also have

Dividing both equations

The sound intensity of train is 1000 times greater than that of the library.
Answer:
I'm not 100% sure, but I think the answer would be the first one because there's a force pushing the object in every direction, so they would cancel eachother out and make the object stay in the same place.
Explanation:
pls vote brainliest
Answer:
cần cung cấp 70 độ vì nước sôi ở 100°C
Explanation:
Answer:
k = 6,547 N / m
Explanation:
This laboratory experiment is a simple harmonic motion experiment, where the angular velocity of the oscillation is
w = √ (k / m)
angular velocity and rel period are related
w = 2π / T
substitution
T = 2π √(m / K)
in Experimental measurements give us the following data
m (g) A (cm) t (s) T (s)
100 6.5 7.8 0.78
150 5.5 9.8 0.98
200 6.0 10.9 1.09
250 3.5 12.4 1.24
we look for the period that is the time it takes to give a series of oscillations, the results are in the last column
T = t / 10
To find the spring constant we linearize the equation
T² = (4π²/K) m
therefore we see that if we make a graph of T² against the mass, we obtain a line, whose slope is
m ’= 4π² / k
where m’ is the slope
k = 4π² / m'
the equation of the line of the attached graph is
T² = 0.00603 m + 0.0183
therefore the slope
m ’= 0.00603 s²/g
we calculate
k = 4 π² / 0.00603
k = 6547 g / s²
we reduce the mass to the SI system
k = 6547 g / s² (1kg / 1000 g)
k = 6,547 kg / s² =
k = 6,547 N / m
let's reduce the uniqueness
[N / m] = [(kg m / s²) m] = [kg / s²]