Milk, apples, and beans don't have much carbohydrate. So if you
cut down on those, you don't really cut down much on carbohydrates.
If Rachel needs to reduce her intake of carbohydrates, she should
cut down on bread. (Also cake, sugar, corn, pasta, and potatoes.)
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J
I believe the answer would be mass. Low mass stars and medium mass stars often become white dwarfs when they die while high mass stars explode in violent explosions called supernovas and usually leave behind a black hole or a neutron star.
<span>The particles through which compressional waves travel move in the same direction as the wave. This may be observed by fixing one end of a large spring and then compressing and extending the other end. The wave travels from one end to the other and the spring's parts move in the same direction.</span>
Answer:
D) directly, inversely
Explanation:
The energy of a photon of light is directly proportional to its frequency and inversely proportional to its wavelength.
Frequency is the number of waves that passes through a point per unit of time.
Wavelength is the is the distance between successive crests or troughs on a wave.
Mathematically, frequency is related to wavelength and velocity using;
Energy = h x f
where h is the Planck's constant
f is the frequency
Since c = f ∧
where f is the frequency of the wave
∧ is the wavelength of the wave
c is the speed of light
So;
f = c/∧
Therefore;
E = 
From the equation, we see an inverse relationship between E and wavelength and a direct one with frequency.