The mass of aluminium foil is calculated as follows
mass = density x volume
density = 2.70 g/cm^3
volume 54 cm^3
mass of aluminium foil is therefore = 2.70 g/cm^3 x 54 cm^3 =145.8 grams
cm^3 cancel out each other
This equation C5H + O2 ---> CO2 + H2O has a mistake.
C5H is wrong. You missed the subscript of H.
I will do it for you assuming some subscript to show you the procedure, but you have to use the right equation to get the right balanced equation.
Assuming the tha combustion equation is C5H12 + O2 ---> CO2 + H2O
First you need to balance C, so you put a 5 before CO2 and get
C5H12 + O2 ---> 5CO2 + H2O
Now you count the hydrogens: 12 on the left and 2 on the right. So put a 6 before H2O and get:
C5H12 + O2 ---> 5CO2 + 6H2O
Now count the oxygens: 2 on the left and 16 on the right, so put an 8 on before O2:
=> C5H12 + 8O2 ---> 5CO2 + 6H2O.
You can verify that the equation is balanced
Answer:
At STP, 760mmHg or 1 atm and OK or 273 degrees celcius
Explanation:
The standard temperature and pressure is the temperature and pressure at which we have the molecules of a gas behaving as an ideal gas. At this temperature and pressure, it is expected that the gas exhibits some properties that make it behave like an ideal gas.
This temperature and pressure conform some certain properties on a gas molecule which make us say it is behaving like an ideal gas. Ordinarily at other temperatures and pressures, these properties are not obtainable
Take for instance, one mole of a gas at stp occupies a volume of 22.4L. This particular volume is not obtainable at other temperatures and pressures but at this particular temperature and pressure. One mole of a gas will occupy this said volume no matter its molar mass and constituent elements. This is because at this temperature and pressure, the gas is expected to behave like an ideal gas and thus exhibit the characteristics which are expected of an ideal gas
Answer:
They are eukaryotic, which means they have a nucleus. Most have mitochondria