The largest number of different whole numbers that can be on Zoltan's list is 999
<h3>How to determine the largest number?</h3>
The condition is given as:
Number = 1/3 of another number
Or
Number = 3 times another number
This means that the list consists of multiples of 3
The largest multiple of 3 less than 1000 is 999
Hence, the largest number of different whole numbers that can be on Zoltan's list is 999
Read more about whole numbers at:
brainly.com/question/19161857
#SPJ1
Equations don't have minimum or maximum, functions do.
Function y=2n^2+5n-25 has minimum -28.125, has no maximum.
Answer:
P____Q____R
PR= PQ+ QR
(14x-13) = (5x-2)+(6x+1)
14x-13= 11x – 1
14x – 11x = 13–1
3x = 12
x= 12/ 3
x= 4
PR= 14x – 13 = 14 (4) – 13 = 18 – 13= 5
If you want (PQ , QR ) this is the solution
PQ =5x-2=5(4)-2=20-2=18
QR =6x+1=6(4)+1=24+1=25
I hope I helped you^_^
Answer:
Answers are below
Step-by-step explanation:
Step 1: Graph the function
Step 2: Identify the type of function. This can be done by looking the exponents
Step 3: Since the exponent is 3, the function is not linear, but instead a cubic function.
I graphed this equation below.
If this answer is correct, please make me Brainliest.