The statement is false, as the system can have no solutions or infinite solutions.
<h3>
Is the statement true or false?</h3>
The statement says that a system of linear equations with 3 variables and 3 equations has one solution.
If the variables are x, y, and z, then the system can be written as:

Now, the statement is clearly false. Suppose that we have:

Then we have 3 parallel equations. Parallel equations never do intercept, then this system has no solutions.
Then there are systems of 3 variables with 3 equations where there are no solutions, so the statement is false.
If you want to learn more about systems of equations:
brainly.com/question/13729904
#SPJ1
Answer:
So to maximize profit 24 downhill and 20 cross country shouldbe produced
Step-by-step explanation:
Let X be the number of downhill skis and Y the number of cross country skis.
Time required for manufacturing and finishing each ski are: manufacturing time per ski, downhill 2.5 hours, cross country 1.5 hours
Finishing time per ski: downhill 0.5 hours, cross country 1.5 hours.
Total manufacturing time taken = (2.5) x+ (1.5+) y = 2.5x+1.5y≤90
total finishing time taken = 0.5x+1.5 y≤42
Profit function
Z = 50x+50y
Objective is to maximize Z
Solving the two equations we get intersecting point is
(x,y) = (24,20)
In the feasible region corner points are (0.28) (36,0)
Profit for these points are
i) 2200 for (24,20)
ii) 1400 for (0,28)
iii) 1800 for (36,0)
So to maximize profit 24 downhill and 20 cross country shouldbe produced.
C because if you divide the angle minus the feet you get 120
Step-by-step explanation:
Using functions, the input is x, the output is y.
<u>Break down the problem:</u>
The output (y) is (equals) one-fourth (1/4) of the input (x)
y equals 1/4 of x

Answer:
dude please hurry up and resend the picture I can hardly see it right now
Step-by-step explanation: