The acceleration of the wagon along the ground is 3.6 m/s².
To solve the problem above, we need to use the formula of acceleration as related to force and mass.
Acceleration: This can be defined as the rate of change of velocity.
⇒ Formula:
- Fcos∅ = ma................. Equation 1
⇒ Where:
- F = Force
- ∅ = angle above the horizontal
- m = mass of the wagon
- a = acceleration of the wagon
⇒ make a the subject of equation 1
- a = Fcos∅/m..................... Equation 2
From the question,
⇒ Given:
⇒ Substitute these values into equation 2
- a = 44(cos35°)/10
- a = 44(0.8191)/10
- a = 3.6 m/s²
Hence, The acceleration of the wagon along the ground is 3.6 m/s²
Learn more about acceleration here: brainly.com/question/9408577
<span>2.4854847</span> miles per hour
Answer:
The person with locked legs will experience greater impact force.
Explanation:
Let the two persons be of nearly equal mass (say m)
The final velocity of an object (person) dropped from a height H (here 2 meters) is given by,
(
= acceleration due to gravity)
which can be derived from Newton's equation of motion,

Now, the time taken (say
) for the momentum (
) to change to zero will be more in the case of the person who bends his legs on impact than who keeps his legs locked.
We know that,

Naturally, the person who bends his legs will experience lesser force since
is larger.
Answer:
The work done by gravity during the roll is 490.6 J
Explanation:
The work (W) is:

<em>Where</em>:
F: is the force
d: is the displacement = 20 m
The force is equal to the weight (W) in the x component:

<em>Where:</em>
m: is the mass of the bowling ball = 5 kg
g: is the gravity = 9.81 m/s²
θ: is the degree angle to the horizontal = 30°
Now, we can find the work:
Therefore, the work done by gravity during the roll is 490.6 J.
I hope it helps you!