Answer:
Technique of comparing abundance ratio between radioactive isotopes to a reference isotope to determine the age of a material called radioactive dating. It determines the age by having a more abundance of isotopes in the cellular being.
Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
Answer:
a) t = 1.6 s
b) d = 4.9 m
c) v = 16 m/s
d) θ = 79°
Explanation:
time of fall
t = √(2h/g) = √(2(12)/9.8) = 1.5649... s
d = vt = 3.1(1.56) = 4.8512...
vertical velocity vy = at = 9.8(1.56) = 15.336... m/s
v = √(15.336² + 3.1²) = 15.6464... m/s
θ = arctan(15.336/3.1) = 78.5724...°
Max height occurs when v = 0.
v(t) = ds(t)/dt
v(t) = 80 - 32t
0 = 80 - 32t
t = 5/2
s(5/2) = 80(5/2) - 16(5/2)^2
s(5/2) = 100
Answer: 100 ft
96 = 80t - 16t²
t = 3, 2
(80 ± √256) / 32 using the quadratic equation.
v(2) = 16
v(3) = -16